Menu Close

Question-99392




Question Number 99392 by AwaisAhmed last updated on 20/Jun/20
Commented by PRITHWISH SEN 2 last updated on 21/Jun/20
To be continuous   4b=−2⇒b= −(1/2)
$$\mathrm{To}\:\mathrm{be}\:\mathrm{continuous}\: \\ $$$$\mathrm{4b}=−\mathrm{2}\Rightarrow\boldsymbol{\mathrm{b}}=\:−\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$
Answered by Rio Michael last updated on 20/Jun/20
if f(x) is continuous, then it is continuous at x = −2  ⇒ lim_(x→−2^− )  f(x) = lim_(x→−2^+ )  f(x) = f(2)  lim_(x→−2^− )  x = −2 and also lim_(x→−2^+ )  bx^2  = 4b  also f(−2) = 4b  ⇒ −2 = 4b ⇔ b = −(1/2)
$$\mathrm{if}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{continuous},\:\mathrm{then}\:\mathrm{it}\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{at}\:{x}\:=\:−\mathrm{2} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow−\mathrm{2}^{−} } {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\underset{{x}\rightarrow−\mathrm{2}^{+} } {\mathrm{lim}}\:{f}\left({x}\right)\:=\:{f}\left(\mathrm{2}\right) \\ $$$$\underset{{x}\rightarrow−\mathrm{2}^{−} } {\mathrm{lim}}\:{x}\:=\:−\mathrm{2}\:\mathrm{and}\:\mathrm{also}\:\underset{{x}\rightarrow−\mathrm{2}^{+} } {\mathrm{lim}}\:{bx}^{\mathrm{2}} \:=\:\mathrm{4}{b}\:\:\mathrm{also}\:{f}\left(−\mathrm{2}\right)\:=\:\mathrm{4}{b} \\ $$$$\Rightarrow\:−\mathrm{2}\:=\:\mathrm{4}{b}\:\Leftrightarrow\:{b}\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$
Commented by PRITHWISH SEN 2 last updated on 21/Jun/20
sorry itis a typo
$$\mathrm{sorry}\:\mathrm{itis}\:\mathrm{a}\:\mathrm{typo} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *