Menu Close

Question-99410




Question Number 99410 by Harasanemanabrandah last updated on 20/Jun/20
Commented by PRITHWISH SEN 2 last updated on 20/Jun/20
one of the soln. set is for every positive real number  greater than 0 , x=y
$$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{soln}.\:\mathrm{set}\:\mathrm{is}\:\mathrm{for}\:\mathrm{every}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number} \\ $$$$\mathrm{greater}\:\mathrm{than}\:\mathrm{0}\:,\:\mathrm{x}=\mathrm{y} \\ $$
Commented by Rasheed.Sindhi last updated on 20/Jun/20
2^4 =4^2 ; {x,y}={2,4}
$$\mathrm{2}^{\mathrm{4}} =\mathrm{4}^{\mathrm{2}} ;\:\left\{{x},{y}\right\}=\left\{\mathrm{2},\mathrm{4}\right\} \\ $$
Answered by mr W last updated on 20/Jun/20
for x,y∈R there are infinite many  solutions.    x=y=t∈R^+  is always a solution.  for x≠y:    METHOD I  let x=t ∈R^+   x^y =y^t   y=t^(y/t) =e^((y/t)ln t)   ye^(−(y/t)ln t) =1  (−(y/t)ln t)e^(−(y/t)ln t) =−((ln t)/t)  −(y/t)ln t=W(−((ln t)/t))  y=−(t/(ln t))W(−((ln t)/t))  ⇒general solution  { ((x=t)),((y=−(t/(ln t))W(−((ln t)/t)))) :}  METHOD II  let y=tx with t∈R^+   x^(tx) =(tx)^x   x^t =tx  x^(t−1) =t  ⇒x=t^(1/(t−1))   ⇒y=t^(1+(1/(t−1))) =t^(t/(t−1))   ⇒general solution  { ((x=t^(1/(t−1)) )),((y=t^(t/(t−1)) )) :}
$${for}\:{x},{y}\in\mathbb{R}\:{there}\:{are}\:{infinite}\:{many} \\ $$$${solutions}. \\ $$$$ \\ $$$${x}={y}={t}\in{R}^{+} \:{is}\:{always}\:{a}\:{solution}. \\ $$$${for}\:{x}\neq{y}: \\ $$$$ \\ $$$${METHOD}\:{I} \\ $$$${let}\:{x}={t}\:\in{R}^{+} \\ $$$${x}^{{y}} ={y}^{{t}} \\ $$$${y}={t}^{\frac{{y}}{{t}}} ={e}^{\frac{{y}}{{t}}\mathrm{ln}\:{t}} \\ $$$${ye}^{−\frac{{y}}{{t}}\mathrm{ln}\:{t}} =\mathrm{1} \\ $$$$\left(−\frac{{y}}{{t}}\mathrm{ln}\:{t}\right){e}^{−\frac{{y}}{{t}}\mathrm{ln}\:{t}} =−\frac{\mathrm{ln}\:{t}}{{t}} \\ $$$$−\frac{{y}}{{t}}\mathrm{ln}\:{t}=\mathbb{W}\left(−\frac{\mathrm{ln}\:{t}}{{t}}\right) \\ $$$${y}=−\frac{{t}}{\mathrm{ln}\:{t}}\mathbb{W}\left(−\frac{\mathrm{ln}\:{t}}{{t}}\right) \\ $$$$\Rightarrow{general}\:{solution}\:\begin{cases}{{x}={t}}\\{{y}=−\frac{{t}}{\mathrm{ln}\:{t}}\mathbb{W}\left(−\frac{\mathrm{ln}\:{t}}{{t}}\right)}\end{cases} \\ $$$${METHOD}\:{II} \\ $$$${let}\:{y}={tx}\:{with}\:{t}\in{R}^{+} \\ $$$${x}^{{tx}} =\left({tx}\right)^{{x}} \\ $$$${x}^{{t}} ={tx} \\ $$$${x}^{{t}−\mathrm{1}} ={t} \\ $$$$\Rightarrow{x}={t}^{\frac{\mathrm{1}}{{t}−\mathrm{1}}} \\ $$$$\Rightarrow{y}={t}^{\mathrm{1}+\frac{\mathrm{1}}{{t}−\mathrm{1}}} ={t}^{\frac{{t}}{{t}−\mathrm{1}}} \\ $$$$\Rightarrow{general}\:{solution}\:\begin{cases}{{x}={t}^{\frac{\mathrm{1}}{{t}−\mathrm{1}}} }\\{{y}={t}^{\frac{{t}}{{t}−\mathrm{1}}} }\end{cases} \\ $$
Commented by 1549442205 last updated on 21/Jun/20
Thank you,sir.I like second way,it is  explicit
$$\mathrm{Thank}\:\mathrm{you},\mathrm{sir}.\mathrm{I}\:\mathrm{like}\:\mathrm{second}\:\mathrm{way},\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{explicit} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *