Question Number 99430 by I want to learn more last updated on 20/Jun/20
Answered by mr W last updated on 20/Jun/20
$${f}\left({x}\right)={x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{2}} −\frac{\mathrm{44}}{\mathrm{9}}{x}−\frac{\mathrm{40}}{\mathrm{9}}=\mathrm{0} \\ $$$${f}\:'\left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{3}}{x}−\frac{\mathrm{44}}{\mathrm{9}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{27}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{44}=\mathrm{0} \\ $$$$\Rightarrow{x}=−\frac{\mathrm{4}}{\mathrm{3}},\:\frac{\mathrm{11}}{\mathrm{9}} \\ $$$${one}\:{of}\:{them}\:{is}\:{a}\:{double}\:{root}\:{of}\:{f}\left({x}\right)=\mathrm{0}. \\ $$$${after}\:{checking}\:{we}\:{know}\:{it}\:{is}\:{x}=−\frac{\mathrm{4}}{\mathrm{3}}. \\ $$$${say}\:{the}\:{other}\:{root}\:{is}\:\beta,\:{then} \\ $$$${x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{2}} −\frac{\mathrm{44}}{\mathrm{9}}{x}−\frac{\mathrm{40}}{\mathrm{9}}=\left({x}+\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{2}} \left({x}−\beta\right) \\ $$$${with}\:{x}=\mathrm{0}\:{we}\:{get} \\ $$$$−\frac{\mathrm{40}}{\mathrm{9}}=\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{2}} \left(−\beta\right) \\ $$$$\Rightarrow\beta=\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\Rightarrow{the}\:{roots}\:{are}\:{x}=−\frac{\mathrm{4}}{\mathrm{3}},−\frac{\mathrm{4}}{\mathrm{3}}\:{and}\:\frac{\mathrm{5}}{\mathrm{2}} \\ $$
Commented by floor(10²Eta[1]) last updated on 21/Jun/20
$$ \\ $$$$ \\ $$$${ok}\:{but}\:{what}'{s}\:{the}\:{proof} \\ $$
Commented by I want to learn more last updated on 20/Jun/20
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{appreciate}. \\ $$
Commented by floor(10²Eta[1]) last updated on 21/Jun/20
$$ \\ $$$$ \\ $$$${can}\:{you}\:{explain}\:{me}\:{why}\:{doing}\:{f}'\left({x}\right)=\mathrm{0} \\ $$$${you}\:{know}\:{that}\:{one}\:{of}\:{the}\:{roots}\:{are}\:{repeated}\int \\ $$
Commented by 1549442205 last updated on 21/Jun/20
$$\mathrm{we}\:\mathrm{have}\:\mathrm{the}\:\mathrm{following}\:\mathrm{property}: \\ $$$$\mathrm{if}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{0}\:\mathrm{has}\:\mathrm{one}\:\mathrm{double}\:\mathrm{root}\:\mathrm{then}\: \\ $$$$\mathrm{that}\:\mathrm{root}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{0} \\ $$
Commented by mr W last updated on 21/Jun/20
Commented by mr W last updated on 21/Jun/20
$${if}\:{there}\:{are}\:{three}\:{real}\:{roots},\:{P}\:{and} \\ $$$${Q}\:{must}\:{lie}\:{above}\:{and}\:{under}\:{the}\: \\ $$$${x}−{axis}. \\ $$
Commented by PRITHWISH SEN 2 last updated on 21/Jun/20
$$\mathrm{let}\:\boldsymbol{\mathrm{a}}\:\mathrm{and}\:\boldsymbol{\mathrm{b}}\:\mathrm{be}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{then} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{x}−\mathrm{a}\right)^{\mathrm{2}} \left(\mathrm{x}−\mathrm{b}\right) \\ $$$$\boldsymbol{\mathrm{f}}'\left(\mathrm{x}\right)=\mathrm{2}\left(\mathrm{x}−\mathrm{a}\right)\left(\mathrm{x}−\mathrm{b}\right)+\left(\mathrm{x}−\mathrm{a}\right)^{\mathrm{2}} \\ $$$$\mathrm{it}\:\mathrm{is}\:\mathrm{clear}\:\mathrm{that}\:\mathrm{a}\:\mathrm{is}\:\mathrm{also}\:\mathrm{the}\:\mathrm{root}\:\mathrm{of}\:\boldsymbol{\mathrm{f}}'\left(\mathrm{x}\right).\:\boldsymbol{\mathrm{proof}} \\ $$
Commented by mr W last updated on 21/Jun/20
Commented by mr W last updated on 21/Jun/20
$${if}\:{there}\:{is}\:{a}\:{double}\:{root},\:{one}\:{from} \\ $$$${P}\:{and}\:{Q}\:{must}\:{lie}\:{on}\:{the}\:{x}−{axis}. \\ $$
Commented by mr W last updated on 21/Jun/20
Commented by mr W last updated on 21/Jun/20
$${if}\:{there}\:{is}\:{only}\:{one}\:{real}\:{root},\:{then} \\ $$$${P}\:{and}\:{Q}\:{don}'{t}\:{exist}\:{or}\:{both}\:{of}\:{them} \\ $$$${must}\:{lie}\:{above}\:{or}\:{under}\:{the}\:{x}−{axis}. \\ $$
Commented by mr W last updated on 21/Jun/20
$${a}\:{double}\:{root}\:{means}:\:{the}\:{curve}\:{f}\left({x}\right) \\ $$$${tangents}\:{the}\:{x}−{axis}. \\ $$