Menu Close

Question-99504




Question Number 99504 by pticantor last updated on 21/Jun/20
Answered by Ar Brandon last updated on 21/Jun/20
Posons x=(√2)tanθ⇒dx=(√2)sec^2 θdθ  I=∫(((√2)sec^2 θ)/((2tan^2 θ+2)^2 ))dθ=(1/(2(√2)))∫(1/(sec^2 θ))dθ=(1/(2(√2)))∫cos^2 θdθ     =(1/(4(√2)))∫{1+cos(2θ)}dθ=(θ/(4(√2)))+((sin(2θ))/(8(√2)))+C
Posonsx=2tanθdx=2sec2θdθI=2sec2θ(2tan2θ+2)2dθ=1221sec2θdθ=122cos2θdθ=142{1+cos(2θ)}dθ=θ42+sin(2θ)82+C
Answered by Dwaipayan Shikari last updated on 21/Jun/20
Suppose,x=(√2)tanα  so,(dx/dα)=(√2)sec^2 α  ∫(((√2)sec^2 αdα)/(4(tan^2 α+1)^2 ))=(1/(2(√2)))∫cos^2 αdα=(1/(4(√2)))∫(1+cos2α)dα  =(α/(4(√2)))+((sin2α)/(8(√2)))+constant  =((tan^(−1) (x/( (√2))))/(4(√2)))+((sin(2tan^(−1) (x/( (√2)))))/(8(√2)))+constant
Suppose,x=2tanαso,dxdα=2sec2α2sec2αdα4(tan2α+1)2=122cos2αdα=142(1+cos2α)dα=α42+sin2α82+constant=tan1x242+sin(2tan1x2)82+constant
Answered by mathmax by abdo last updated on 21/Jun/20
A =∫  (dx/((x^2  +2)^2 ))   changement x =(√2)tanθ give A =∫  (((√2)(1+tan^2 θ)dθ)/(4(1+tan^2 θ)^2 ))  =((√2)/4) ∫ (dθ/(1+tan^2 θ)) =((√2)/4) ∫cos^2 θ dθ =((√2)/4) ∫((1+cos(2θ))/2)dθ  =((√2)/8){ θ  +(1/2)sin(2θ)}+c =((√2)/8) arctan((x/( (√2)))) +((√2)/8)sinθ cosθ+c  but  sinθ cosθ =tanθ ×cos^2 θ =(x/( (√2)))((1/(1+tan^2 θ))) =(x/( (√2)))((1/(1+(x^2 /2)))) =((2x)/( (√2)(x^2  +2))) ⇒  A =((√2)/8) arctan((x/( (√2))))+((√2)/8)×((2x)/( (√2)(x^2  +2)))+c ⇒A =((√2)/8) arctan((x/( (√2))))+(x/(4(x^2  +2)))+c
A=dx(x2+2)2changementx=2tanθgiveA=2(1+tan2θ)dθ4(1+tan2θ)2=24dθ1+tan2θ=24cos2θdθ=241+cos(2θ)2dθ=28{θ+12sin(2θ)}+c=28arctan(x2)+28sinθcosθ+cbutsinθcosθ=tanθ×cos2θ=x2(11+tan2θ)=x2(11+x22)=2x2(x2+2)A=28arctan(x2)+28×2x2(x2+2)+cA=28arctan(x2)+x4(x2+2)+c
Answered by maths mind last updated on 22/Jun/20
f(t)=∫(dx/(x^2 +t^2 ))=(1/t)tan^(−1) ((x/t))+c  f′(t)=∫((−2tdx)/((x^2 +t^2 )^2 ))=−(1/t^2 )tan^− ((x/t))−(x/t).(1/(x^2 +t^2 ))+c  t=(√2)⇒∫(dx/((x^2 +2)^2 ))=(1/(4(√2)))tan^− ((x/( (√2))))+(x/(4(x^2 +2)))+d
f(t)=dxx2+t2=1ttan1(xt)+cf(t)=2tdx(x2+t2)2=1t2tan(xt)xt.1x2+t2+ct=2dx(x2+2)2=142tan(x2)+x4(x2+2)+d

Leave a Reply

Your email address will not be published. Required fields are marked *