Menu Close

Question-99584




Question Number 99584 by DGmichael last updated on 21/Jun/20
Answered by Rasheed.Sindhi last updated on 22/Jun/20
If  a≡b(mod m) and P(x) is a  polynomial with integer coficients  then       P(a)≡P(b)(mod m)    Now,      Let P(x)=a_n x^n +a_(n−1) x^(n−1) +...+a_1 x+a_0   where  0≤a_i ≤9  As  10≡1(mod 9)  Therefore,  a_n .10^n +a_(n−1) .10^(n−1) +...a_1 .10+a_0               ≡a_n .1^n +a_(n−1) .1^(n−1) +...+a_1 .1+a_0                                                                (mod 9)   a_n a_(n−1) ...a_1 a_0 ≡a_n +a_(n−1) +...+a_1 +a_0                                                                            (mod 9)  That is a number is divisible by  9 if its sum of digits is divisible  by 9.
Ifab(modm)andP(x)isapolynomialwithintegercoficientsthenP(a)P(b)(modm)Now,LetP(x)=anxn+an1xn1++a1x+a0where0ai9As101(mod9)Therefore,an.10n+an1.10n1+a1.10+a0an.1n+an1.1n1++a1.1+a0(mod9)anan1a1a0an+an1++a1+a0(mod9)Thatisanumberisdivisibleby9ifitssumofdigitsisdivisibleby9.
Commented by DGmichael last updated on 23/Jun/20
thanks sir !��

Leave a Reply

Your email address will not be published. Required fields are marked *