Question Number 99584 by DGmichael last updated on 21/Jun/20
Answered by Rasheed.Sindhi last updated on 22/Jun/20
$${If}\:\:{a}\equiv{b}\left({mod}\:{m}\right)\:{and}\:{P}\left({x}\right)\:{is}\:{a} \\ $$$${polynomial}\:{with}\:{integer}\:{coficients} \\ $$$${then} \\ $$$$\:\:\:\:\:{P}\left({a}\right)\equiv{P}\left({b}\right)\left({mod}\:{m}\right) \\ $$$$ \\ $$$${Now}, \\ $$$$\:\:\:\:{Let}\:{P}\left({x}\right)={a}_{{n}} {x}^{{n}} +{a}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} +…+{a}_{\mathrm{1}} {x}+{a}_{\mathrm{0}} \\ $$$${where}\:\:\mathrm{0}\leqslant{a}_{{i}} \leqslant\mathrm{9} \\ $$$${As}\:\:\mathrm{10}\equiv\mathrm{1}\left({mod}\:\mathrm{9}\right) \\ $$$${Therefore}, \\ $$$${a}_{{n}} .\mathrm{10}^{{n}} +{a}_{{n}−\mathrm{1}} .\mathrm{10}^{{n}−\mathrm{1}} +…{a}_{\mathrm{1}} .\mathrm{10}+{a}_{\mathrm{0}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\equiv{a}_{{n}} .\mathrm{1}^{{n}} +{a}_{{n}−\mathrm{1}} .\mathrm{1}^{{n}−\mathrm{1}} +…+{a}_{\mathrm{1}} .\mathrm{1}+{a}_{\mathrm{0}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({mod}\:\mathrm{9}\right) \\ $$$$\:{a}_{{n}} {a}_{{n}−\mathrm{1}} …{a}_{\mathrm{1}} {a}_{\mathrm{0}} \equiv{a}_{{n}} +{a}_{{n}−\mathrm{1}} +…+{a}_{\mathrm{1}} +{a}_{\mathrm{0}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({mod}\:\mathrm{9}\right) \\ $$$${That}\:{is}\:{a}\:{number}\:{is}\:{divisible}\:{by} \\ $$$$\mathrm{9}\:{if}\:{its}\:{sum}\:{of}\:{digits}\:{is}\:{divisible} \\ $$$${by}\:\mathrm{9}. \\ $$
Commented by DGmichael last updated on 23/Jun/20
thanks sir !