Menu Close

Question-99761




Question Number 99761 by Lekhraj last updated on 23/Jun/20
Commented by Dwaipayan Shikari last updated on 23/Jun/20
Ans=1
$${Ans}=\mathrm{1} \\ $$
Commented by Dwaipayan Shikari last updated on 23/Jun/20
=e^(lim_(x→0^+ ) (x−1)sinx) =1
$$={e}^{{li}\underset{{x}\rightarrow\mathrm{0}^{+} } {{m}}\left({x}−\mathrm{1}\right){sinx}} =\mathrm{1} \\ $$
Answered by mathmax by abdo last updated on 23/Jun/20
let L(x) =x^(sinx)  ⇒L(x) =e^(sinxln(x))    but  sinx ln(x)∼xln(x)→0 (x→0^+ ) ⇒  lim_(x→0^+ )    L(x) =1
$$\mathrm{let}\:\mathrm{L}\left(\mathrm{x}\right)\:=\mathrm{x}^{\mathrm{sinx}} \:\Rightarrow\mathrm{L}\left(\mathrm{x}\right)\:=\mathrm{e}^{\mathrm{sinxln}\left(\mathrm{x}\right)} \:\:\:\mathrm{but}\:\:\mathrm{sinx}\:\mathrm{ln}\left(\mathrm{x}\right)\sim\mathrm{xln}\left(\mathrm{x}\right)\rightarrow\mathrm{0}\:\left(\mathrm{x}\rightarrow\mathrm{0}^{+} \right)\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}^{+} } \:\:\:\mathrm{L}\left(\mathrm{x}\right)\:=\mathrm{1} \\ $$
Commented by Lekhraj last updated on 23/Jun/20
Thanks .
$$\mathrm{Thanks}\:.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *