Menu Close

Question-99796




Question Number 99796 by harckinwunmy last updated on 23/Jun/20
Answered by 1549442205 last updated on 30/Jun/20
Our problem is equivalent to solve the  system of the equations: { ((y^2 =4^x  (1))),((y^x =16 (2))) :} (∗)  (1)⇔y^2 =(2^x )^2 ⇔y=2^x .Putting this into  (2) we get (2^x )^x =2^4 ⇔2^x^2  =2^4 ⇔x^2 =4  ⇔x=±2,y=∈{4;(1/4)} ⇒(x;y)∈{(2;4);(−2;(1/4))} is root of the  system (∗).Hence,A∩B={(2;4);(−2;(1/4))}
$$\mathrm{Our}\:\mathrm{problem}\:\mathrm{is}\:\mathrm{equivalent}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{the} \\ $$$$\mathrm{system}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equations}:\begin{cases}{\mathrm{y}^{\mathrm{2}} =\mathrm{4}^{\mathrm{x}} \:\left(\mathrm{1}\right)}\\{\mathrm{y}^{\mathrm{x}} =\mathrm{16}\:\left(\mathrm{2}\right)}\end{cases}\:\left(\ast\right) \\ $$$$\left(\mathrm{1}\right)\Leftrightarrow\mathrm{y}^{\mathrm{2}} =\left(\mathrm{2}^{\mathrm{x}} \right)^{\mathrm{2}} \Leftrightarrow\mathrm{y}=\mathrm{2}^{\mathrm{x}} .\mathrm{Putting}\:\mathrm{this}\:\mathrm{into} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{get}\:\left(\mathrm{2}^{\mathrm{x}} \right)^{\mathrm{x}} =\mathrm{2}^{\mathrm{4}} \Leftrightarrow\mathrm{2}^{\mathrm{x}^{\mathrm{2}} } =\mathrm{2}^{\mathrm{4}} \Leftrightarrow\mathrm{x}^{\mathrm{2}} =\mathrm{4} \\ $$$$\Leftrightarrow\mathrm{x}=\pm\mathrm{2},\mathrm{y}=\in\left\{\mathrm{4};\frac{\mathrm{1}}{\mathrm{4}}\right\}\:\Rightarrow\left(\mathrm{x};\mathrm{y}\right)\in\left\{\left(\mathrm{2};\mathrm{4}\right);\left(−\mathrm{2};\frac{\mathrm{1}}{\mathrm{4}}\right)\right\}\:\mathrm{is}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{system}\:\left(\ast\right).\boldsymbol{\mathrm{Hence}},\boldsymbol{\mathrm{A}}\cap\boldsymbol{\mathrm{B}}=\left\{\left(\mathrm{2};\mathrm{4}\right);\left(−\mathrm{2};\frac{\mathrm{1}}{\mathrm{4}}\right)\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *