Menu Close

Question-continuing-from-mrW1-post-on-p-2-mod-n-1-Find-a-number-n-such-that-for-all-m-lt-n-such-that-HCF-m-n-1-m-2-mod-n-1-e-g-for-12-possible-value-of-m-are-1-5-7-11-




Question Number 13733 by prakash jain last updated on 22/May/17
Question continuing from  mrW1 post on p^2  mod n≡1.  Find a number n such that  for all m<n such that HCF(m,n)=1  m^2  mod n =1  e.g. for 12 possible value of m  are 1,5,7,11.
QuestioncontinuingfrommrW1postonp2modn1.Findanumbernsuchthatforallm<nsuchthatHCF(m,n)=1m2modn=1e.g.for12possiblevalueofmare1,5,7,11.
Commented by prakash jain last updated on 22/May/17
This will be sufficient condition  for p^2  mod n=1.  Can be considered necessary if we  assume that for m<n where  HCF(m,n)=1 there exists at  least one prime of the form  ln+m  where (l,m,n) are natural numbers.
Thiswillbesufficientconditionforp2modn=1.Canbeconsiderednecessaryifweassumethatform<nwhereHCF(m,n)=1thereexistsatleastoneprimeoftheformln+mwhere(l,m,n)arenaturalnumbers.
Commented by mrW1 last updated on 23/May/17
For m such that all prime numbers  can be expressed as p=mk±1, I think  there are only following possibilities:  m=2: p=2k±1 ⇒n=4  m=4: p=4k±1 ⇒n=8  m=6: p=6k±1 ⇒n=12
Formsuchthatallprimenumberscanbeexpressedasp=mk±1,Ithinkthereareonlyfollowingpossibilities:m=2:p=2k±1n=4m=4:p=4k±1n=8m=6:p=6k±1n=12
Commented by prakash jain last updated on 23/May/17
Yes. For any number n we can   express all primes as  mn+k where HCF(k,n)=1,k<n  (mn+k)^2  mod n=k^2  mod n  n=12⇒k=1,5,7,11  5^2 ≡1 (mod 12)  7^2 ≡1 (mod 12)   Now the question is to find n where  k^2  mod n=1 (HCF(k,n)=1,k<n)  (or to prove that no such n exist).
Yes.Foranynumbernwecanexpressallprimesasmn+kwhereHCF(k,n)=1,k<n(mn+k)2modn=k2modnn=12k=1,5,7,11521(mod12)721(mod12)Nowthequestionistofindnwherek2modn=1(HCF(k,n)=1,k<n)(ortoprovethatnosuchnexist).
Commented by prakash jain last updated on 23/May/17
continuing  k^2  mod n=1  k^2 =mn+1  k^2 −1=mn  (k−1)(k+1)=mn
continuingk2modn=1k2=mn+1k21=mn(k1)(k+1)=mn

Leave a Reply

Your email address will not be published. Required fields are marked *