Menu Close

Question-find-the-minimum-value-of-f-x-1-x-2-x-4-2x-




Question Number 157604 by mnjuly1970 last updated on 25/Oct/21
          Question    find the” minimum” value of:    f (x):= ∣1+x∣+∣ 2+x∣ + ∣4 +2x∣
Questionfindtheminimumvalueof:f(x):=1+x+2+x+4+2x
Commented by mr W last updated on 25/Oct/21
i think the easiest way is to check all  kink positions:  x=−1, −2  f(−1)=0+1+2=3  f(−2)=1+0+0=1  ⇒f(x)_(min) =1
ithinktheeasiestwayistocheckallkinkpositions:x=1,2f(1)=0+1+2=3f(2)=1+0+0=1f(x)min=1
Commented by mr W last updated on 25/Oct/21
in this case we can also do like this:  f(x)=∣1+x∣+3∣1+1+x∣=∣1+x∣+3±3∣1+x∣  =3+ { ((4∣1+x∣)),((−2∣1+x∣)) :}  f(x)_(min) =3−2=1 at x=−1
inthiscasewecanalsodolikethis:f(x)=∣1+x+31+1+x∣=∣1+x+3±31+x=3+{41+x21+xf(x)min=32=1atx=1
Commented by mnjuly1970 last updated on 25/Oct/21
grateful sir W
gratefulsirW
Answered by TheSupreme last updated on 25/Oct/21
f(x)=∣1+x∣+3∣2+x∣  f′(x)=sgn(1+x)+3sgn(2+x)≠0 ∀x∈R−{−1,−2}  f(−1)=3  f(−2)=1  lim_(x→±∞)  f(x)=∞  min f(x)=1
f(x)=∣1+x+32+xf(x)=sgn(1+x)+3sgn(2+x)0xR{1,2}f(1)=3f(2)=1limx±f(x)=minf(x)=1
Commented by mnjuly1970 last updated on 25/Oct/21
thanks alot
thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *