Menu Close

question-If-0-1-ln-2-1-x-4-x-dx-a-b-find-the-value-of-a-b-




Question Number 158293 by mnjuly1970 last updated on 02/Nov/21
       question#  If ,  Ω =∫_0 ^( 1) ((ln^( 2) (1−x^( 4) ))/x) dx= a ζ b)        find the value of ,     a  , b  .
You can't use 'macro parameter character #' in math modeIf,Ω=01ln2(1x4)xdx=aζb)findthevalueof,a,b.
Answered by qaz last updated on 02/Nov/21
∫_0 ^1 ((ln^2 (1−x^4 ))/x)dx  =(1/4)∫_0 ^1 ((ln^2 (1−x))/x)dx  =(1/4)Σ_(n=0) ^∞ ∫_0 ^1 x^n ln^2 xdx  =(1/4)Σ_(n=0) ^∞ ((2!)/((n+1)^3 ))  =(1/2)ζ(3)
01ln2(1x4)xdx=1401ln2(1x)xdx=14n=001xnln2xdx=14n=02!(n+1)3=12ζ(3)
Commented by mnjuly1970 last updated on 02/Nov/21
grateful sir qaz  excellent as always
gratefulsirqazexcellentasalways
Answered by mindispower last updated on 02/Nov/21
=∫_0 ^1 ((ln^2 (1−x^4 )x^3 )/x^4 )dx  =∫_0 ^1 ((ln^2 (1−t))/t)(dt/3)  ln(1−t)=−u⇒dt=e^(−u) du  =(1/3)∫_0 ^∞ ((u^2 e^(−u) )/(1−e^(−u) ))du=(1/3)Γ(3)ζ(3)=(2/3)ζ(3)
=01ln2(1x4)x3x4dx=01ln2(1t)tdt3ln(1t)=udt=eudu=130u2eu1eudu=13Γ(3)ζ(3)=23ζ(3)
Commented by mnjuly1970 last updated on 03/Nov/21
thx sir power
thxsirpower
Answered by Ar Brandon last updated on 02/Nov/21
Ω=∫_0 ^1 ((ln^2 (1−x^4 ))/x)dx, x=u^(1/4) ⇒dx=(1/4)u^(−(3/4)) du      =(1/4)∫_0 ^1 ((ln^2 (1−u))/u)du=(1/4)∫_0 ^1 ((ln^2 u)/(1−u))du      =−(1/4)ψ^((2)) (1)=(2/4)ζ(3)=(1/2)ζ(3)
Ω=01ln2(1x4)xdx,x=u14dx=14u34du=1401ln2(1u)udu=1401ln2u1udu=14ψ(2)(1)=24ζ(3)=12ζ(3)
Commented by mnjuly1970 last updated on 03/Nov/21
mercey mr brandon
merceymrbrandon

Leave a Reply

Your email address will not be published. Required fields are marked *