Menu Close

Question-let-x-lt-a-n-a-n-1-a-1-a-0-gt-N-a-0-0-amp-y-lt-a-n-a-n-1-a-1-gt-N-be-two-natural-numbers-such-that-x-y-N-find-the-number-x-




Question Number 192142 by mehdee42 last updated on 09/May/23
Question  let   x=<a_n a_(n−1) ...a_1 a_0 > ∈N ; a_0 ≠0  &    y=<a_n a_(n−1) ...a_1 > ∈N  be   two natural numbers   such that  (x/y)∈N   find the number “ x ” ?
$${Question} \\ $$$${let}\:\:\:{x}=<{a}_{{n}} {a}_{{n}−\mathrm{1}} …{a}_{\mathrm{1}} {a}_{\mathrm{0}} >\:\in\mathbb{N}\:;\:{a}_{\mathrm{0}} \neq\mathrm{0}\:\:\&\: \\ $$$$\:{y}=<{a}_{{n}} {a}_{{n}−\mathrm{1}} …{a}_{\mathrm{1}} >\:\in\mathbb{N}\:\:{be}\: \\ $$$${two}\:{natural}\:{numbers}\: \\ $$$${such}\:{that}\:\:\frac{{x}}{{y}}\in\mathbb{N}\: \\ $$$${find}\:{the}\:{number}\:“\:{x}\:''\:? \\ $$$$ \\ $$
Answered by AST last updated on 09/May/23
For a 2-digit number,x;possible values:  99,88,77,66,55,48,44,39,36,33,28,26,...,22,19,...,11    Now,for an n-digit number(n atleast 3)  (where a_0 ≠0)  (x/y)=((10x)/(x−a_0 ))=((10(x−a_0 )+10a_0 )/(x−a_0 ))=10+((10a_0 )/(x−a_0 ))  ⇒x−a_0 ∣10a_0 ⇒x−a_0 ≤10a_0   ⇒11a_0 ≥x  But this is impossible since max{11a_0 }=99  which is not atleast a 3-digit number.  ⇒Only 2-digit solutions exist.
$${For}\:{a}\:\mathrm{2}-{digit}\:{number},{x};{possible}\:{values}: \\ $$$$\mathrm{99},\mathrm{88},\mathrm{77},\mathrm{66},\mathrm{55},\mathrm{48},\mathrm{44},\mathrm{39},\mathrm{36},\mathrm{33},\mathrm{28},\mathrm{26},…,\mathrm{22},\mathrm{19},…,\mathrm{11} \\ $$$$ \\ $$$${Now},{for}\:{an}\:{n}-{digit}\:{number}\left({n}\:{atleast}\:\mathrm{3}\right) \\ $$$$\left({where}\:{a}_{\mathrm{0}} \neq\mathrm{0}\right) \\ $$$$\frac{{x}}{{y}}=\frac{\mathrm{10}{x}}{{x}−{a}_{\mathrm{0}} }=\frac{\mathrm{10}\left({x}−{a}_{\mathrm{0}} \right)+\mathrm{10}{a}_{\mathrm{0}} }{{x}−{a}_{\mathrm{0}} }=\mathrm{10}+\frac{\mathrm{10}{a}_{\mathrm{0}} }{{x}−{a}_{\mathrm{0}} } \\ $$$$\Rightarrow{x}−{a}_{\mathrm{0}} \mid\mathrm{10}{a}_{\mathrm{0}} \Rightarrow{x}−{a}_{\mathrm{0}} \leqslant\mathrm{10}{a}_{\mathrm{0}} \\ $$$$\Rightarrow\mathrm{11}{a}_{\mathrm{0}} \geqslant{x} \\ $$$${But}\:{this}\:{is}\:{impossible}\:{since}\:{max}\left\{\mathrm{11}{a}_{\mathrm{0}} \right\}=\mathrm{99} \\ $$$${which}\:{is}\:{not}\:{atleast}\:{a}\:\mathrm{3}-{digit}\:{number}. \\ $$$$\Rightarrow{Only}\:\mathrm{2}-{digit}\:{solutions}\:{exist}. \\ $$
Commented by mehdee42 last updated on 09/May/23
it is very beautiful solution.  in addition according to the condition “ a_0 ≠0”  x≠10,20,...,90
$${it}\:{is}\:{very}\:{beautiful}\:{solution}. \\ $$$${in}\:{addition}\:{according}\:{to}\:{the}\:{condition}\:“\:{a}_{\mathrm{0}} \neq\mathrm{0}'' \\ $$$${x}\neq\mathrm{10},\mathrm{20},…,\mathrm{90} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *