Menu Close

Question-let-x-lt-a-n-a-n-1-a-1-a-0-gt-N-a-0-0-amp-y-lt-a-n-a-n-1-a-1-gt-N-be-two-natural-numbers-such-that-x-y-N-find-the-number-x-




Question Number 192142 by mehdee42 last updated on 09/May/23
Question  let   x=<a_n a_(n−1) ...a_1 a_0 > ∈N ; a_0 ≠0  &    y=<a_n a_(n−1) ...a_1 > ∈N  be   two natural numbers   such that  (x/y)∈N   find the number “ x ” ?
Questionletx=<anan1a1a0>N;a00&y=<anan1a1>NbetwonaturalnumberssuchthatxyNfindthenumberx?
Answered by AST last updated on 09/May/23
For a 2-digit number,x;possible values:  99,88,77,66,55,48,44,39,36,33,28,26,...,22,19,...,11    Now,for an n-digit number(n atleast 3)  (where a_0 ≠0)  (x/y)=((10x)/(x−a_0 ))=((10(x−a_0 )+10a_0 )/(x−a_0 ))=10+((10a_0 )/(x−a_0 ))  ⇒x−a_0 ∣10a_0 ⇒x−a_0 ≤10a_0   ⇒11a_0 ≥x  But this is impossible since max{11a_0 }=99  which is not atleast a 3-digit number.  ⇒Only 2-digit solutions exist.
Fora2digitnumber,x;possiblevalues:99,88,77,66,55,48,44,39,36,33,28,26,,22,19,,11Now,foranndigitnumber(natleast3)(wherea00)xy=10xxa0=10(xa0)+10a0xa0=10+10a0xa0xa010a0xa010a011a0xButthisisimpossiblesincemax{11a0}=99whichisnotatleasta3digitnumber.Only2digitsolutionsexist.
Commented by mehdee42 last updated on 09/May/23
it is very beautiful solution.  in addition according to the condition “ a_0 ≠0”  x≠10,20,...,90
itisverybeautifulsolution.inadditionaccordingtotheconditiona00x10,20,,90

Leave a Reply

Your email address will not be published. Required fields are marked *