Menu Close

question-proposed-MN-july-1970-0-pi-4-tanx-ln-1-tan-2-x-dx-my-solution-followed-




Question Number 111157 by mathdave last updated on 02/Sep/20
question proposed MN july 1970  ∫_0 ^(π/4) tanx(ln(1+tan^2 x))dx  my solution followed
questionproposedMNjuly19700π4tanx(ln(1+tan2x))dxmysolutionfollowed
Answered by mathdave last updated on 02/Sep/20
since  1+tan^2 x=sec^2 x  let I=∫_0 ^(π/4) tanxln(sec^2 x)dx=2∫_0 ^(π/2) tanxln(secx)dx  let  u=ln(secx),du=tanxdx  and dx=(1/(tanx))du  I=2∫_0 ^(π/4) tanx×u×(1/(tanx))du=2∫_0 ^(π/4) udu  I=2[(u^2 /2)]_0 ^(π/4) =2[((ln^2 (cosx))/2)]_0 ^(π/4) =[0−ln^2 ((1/( (√2))))]=(1/4)ln^2 (2)  ∵∫_0 ^(π/4) tanx(ln(1+tan^2 x))dx=(1/4)ln^2 (2)  mathdave(02/09/2020)
since1+tan2x=sec2xletI=0π4tanxln(sec2x)dx=20π2tanxln(secx)dxletu=ln(secx),du=tanxdxanddx=1tanxduI=20π4tanx×u×1tanxdu=20π4uduI=2[u22]0π4=2[ln2(cosx)2]0π4=[0ln2(12)]=14ln2(2)0π4tanx(ln(1+tan2x))dx=14ln2(2)mathdave(02/09/2020)
Commented by mnjuly1970 last updated on 02/Sep/20
thank you so much sir.......
thankyousomuchsir.
Commented by mathdave last updated on 02/Sep/20
you are welcome
youarewelcome
Answered by mathmax by abdo last updated on 02/Sep/20
I =∫_0 ^(π/4)  tanx(ln(1+tan^2 x))dx  changement tanx =t give  I =∫_0 ^1  tln(1+t^2 )(dt/(1+t^2 )) =_(by parts)    [(1/2)ln(1+t^2 )ln(1+t^2 )]_0 ^1   −∫_0 ^1 (1/2)ln(1+t^2 )((2t)/(1+t^2 )) dt =(1/2)ln^2 (2)−∫_0 ^1  ((tln(1+t^2 ))/(1+t^2 ))dt  =(1/2)ln^2 (2)−I ⇒2I =(1/2)ln^2 (2) ⇒★ I =(1/4)ln^2 (2)★
I=0π4tanx(ln(1+tan2x))dxchangementtanx=tgiveI=01tln(1+t2)dt1+t2=byparts[12ln(1+t2)ln(1+t2)]010112ln(1+t2)2t1+t2dt=12ln2(2)01tln(1+t2)1+t2dt=12ln2(2)I2I=12ln2(2)I=14ln2(2)
Commented by mnjuly1970 last updated on 03/Sep/20
very nice thank you master...
verynicethankyoumaster

Leave a Reply

Your email address will not be published. Required fields are marked *