Menu Close

Question-suppose-that-x-1-x-2-are-two-distinct-roots-for-ax-2-bx-c-0-on-0-1-find-the-minimum-value-of-a-a-min-




Question Number 163285 by mnjuly1970 last updated on 05/Jan/22
      # Question #       suppose that  x_1  ,  x_( 2)   are two distinct      roots for   ax^( 2) + bx +c = 0  on ( 0, 1 ).       find  the minimum value of  ” a ” :                             a_( min)  = ?                 −−−−−−−−−
$$ \\ $$$$\:\:\:\:#\:\mathrm{Q}{uestion}\:# \\ $$$$\:\:\:\:\:{suppose}\:{that}\:\:{x}_{\mathrm{1}} \:,\:\:{x}_{\:\mathrm{2}} \:\:{are}\:{two}\:{distinct} \\ $$$$\:\:\:\:{roots}\:{for}\:\:\:{ax}^{\:\mathrm{2}} +\:{bx}\:+{c}\:=\:\mathrm{0}\:\:{on}\:\left(\:\mathrm{0},\:\mathrm{1}\:\right). \\ $$$$\:\:\:\:\:{find}\:\:{the}\:{minimum}\:{value}\:{of}\:\:''\:{a}\:''\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}_{\:{min}} \:=\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−−− \\ $$$$\:\:\:\:\:\: \\ $$
Answered by ajfour last updated on 05/Jan/22
2ax_1 x_2 +b(x_1 +x_2 )+2c=0  2c−(b^2 /a)+2c=0  ⇒   a=(b^2 /(4c))
$$\mathrm{2}{ax}_{\mathrm{1}} {x}_{\mathrm{2}} +{b}\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} \right)+\mathrm{2}{c}=\mathrm{0} \\ $$$$\mathrm{2}{c}−\frac{{b}^{\mathrm{2}} }{{a}}+\mathrm{2}{c}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{a}=\frac{{b}^{\mathrm{2}} }{\mathrm{4}{c}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *