Menu Close

r-0-2-4r-2-




Question Number 36837 by Rio Mike last updated on 06/Jun/18
Σ_(r=0) ^∞ 2^(4r−2)
r=024r2
Commented by prof Abdo imad last updated on 06/Jun/18
let S_n =Σ_(k=0) ^n  2^(4k −2) ⇒S_n =(1/4) Σ_(k=0) ^n  (2^4 )^k   =(1/4) (((2^4 )^(n+1)  −1)/(2^4  −1)) = (1/(4(2^4 −1))){ 2^(4n+4)  −1} but  2>1 ⇒ lim_(n→+∞) 2^(4n+4)  =+∞ ⇒lim_(n→+∞) S_n =+∞
letSn=k=0n24k2Sn=14k=0n(24)k=14(24)n+11241=14(241){24n+41}but2>1limn+24n+4=+limn+Sn=+
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Jun/18
s=2^(4.0−2) +2^(4.1−2) +2^(4.2−2) +2^(4.3−2) +...  =2^(−2) +2^2 +2^6 +2^(10) +..  =((2^(−2) {(2^2 )^n −1})/(2^2 −1))  =((2^(−2) (2^(2n) −1))/3)=((2^(2n) −1)/(12))  since common ratio is 2^2   i,e 4>1  so s→∞
s=24.02+24.12+24.22+24.32+=22+22+26+210+..=22{(22)n1}221=22(22n1)3=22n112sincecommonratiois22i,e4>1sos

Leave a Reply

Your email address will not be published. Required fields are marked *