Menu Close

r-0-sin-r-r-




Question Number 160263 by alcohol last updated on 26/Nov/21
Σ_(r=0) ^∞ ((sin(rα))/(r!))
r=0sin(rα)r!
Commented by CAIMAN last updated on 27/Nov/21
alpha€C non?
Answered by mathmax by abdo last updated on 27/Nov/21
Σ_(n=0) ^∞  ((sin(nα))/(n!))=Im(Σ_(n=0) ^∞  (e^(inα) /(n!)))  we have  Σ_(n=0) ^∞  (e^(inα) /(n!))=Σ_(n=0) ^∞  (((e^(iα) )^n )/(n!)) =e^e^(iα)  =e^(cosα+isinα)   =e^(cosα) (cos(sinα)+isin(sinα)) ⇒  Σ_(n=0) ^∞  ((sin(nα))/(n!))=e^(cosα)  sin(sinα)
n=0sin(nα)n!=Im(n=0einαn!)wehaven=0einαn!=n=0(eiα)nn!=eeiα=ecosα+isinα=ecosα(cos(sinα)+isin(sinα))n=0sin(nα)n!=ecosαsin(sinα)

Leave a Reply

Your email address will not be published. Required fields are marked *