Menu Close

r-0-sin-r-r-




Question Number 160263 by alcohol last updated on 26/Nov/21
Σ_(r=0) ^∞ ((sin(rα))/(r!))
$$\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{sin}\left({r}\alpha\right)}{{r}!} \\ $$
Commented by CAIMAN last updated on 27/Nov/21
alpha€C non?
Answered by mathmax by abdo last updated on 27/Nov/21
Σ_(n=0) ^∞  ((sin(nα))/(n!))=Im(Σ_(n=0) ^∞  (e^(inα) /(n!)))  we have  Σ_(n=0) ^∞  (e^(inα) /(n!))=Σ_(n=0) ^∞  (((e^(iα) )^n )/(n!)) =e^e^(iα)  =e^(cosα+isinα)   =e^(cosα) (cos(sinα)+isin(sinα)) ⇒  Σ_(n=0) ^∞  ((sin(nα))/(n!))=e^(cosα)  sin(sinα)
$$\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{n}\alpha\right)}{\mathrm{n}!}=\mathrm{Im}\left(\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{\mathrm{in}\alpha} }{\mathrm{n}!}\right)\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{e}^{\mathrm{in}\alpha} }{\mathrm{n}!}=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(\mathrm{e}^{\mathrm{i}\alpha} \right)^{\mathrm{n}} }{\mathrm{n}!}\:=\mathrm{e}^{\mathrm{e}^{\mathrm{i}\alpha} } =\mathrm{e}^{\mathrm{cos}\alpha+\mathrm{isin}\alpha} \\ $$$$=\mathrm{e}^{\mathrm{cos}\alpha} \left(\mathrm{cos}\left(\mathrm{sin}\alpha\right)+\mathrm{isin}\left(\mathrm{sin}\alpha\right)\right)\:\Rightarrow \\ $$$$\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{n}\alpha\right)}{\mathrm{n}!}=\mathrm{e}^{\mathrm{cos}\alpha} \:\mathrm{sin}\left(\mathrm{sin}\alpha\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *