Menu Close

r-1-n-3-r-1-sin-3-3-r-




Question Number 185423 by alcohol last updated on 21/Jan/23
Σ_(r=1) ^n 3^(r−1) sin^3 ((θ/3^r )) = ?
nr=13r1sin3(θ3r)=?
Answered by witcher3 last updated on 21/Jan/23
sin^3 (x)=−(1/4)(((e^(3ix) −e^(−3ix) −3e^(ix) +3e^(−ix) )/(2i)))  =−(1/4)sin(3x)+(3/4)sin(x)  S=Σ_(r=1) ^n 3^(r−1) sin^3 ((θ/3^r ))=−(1/4)(Σ_(r=1) ^n 3^(r−1) sin((θ/3^(r−1) ))−Σ_(r=1) ^n 3^r sin((θ/3^r )))  =−(1/4)(sin(θ)−3^n sin((θ/3^n )))
sin3(x)=14(e3ixe3ix3eix+3eix2i)=14sin(3x)+34sin(x)S=nr=13r1sin3(θ3r)=14(nr=13r1sin(θ3r1)nr=13rsin(θ3r))=14(sin(θ)3nsin(θ3n))

Leave a Reply

Your email address will not be published. Required fields are marked *