Menu Close

r-1-n-3-r-1-sin-3-3-r-




Question Number 185423 by alcohol last updated on 21/Jan/23
Σ_(r=1) ^n 3^(r−1) sin^3 ((θ/3^r )) = ?
$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{3}^{{r}−\mathrm{1}} {sin}^{\mathrm{3}} \left(\frac{\theta}{\mathrm{3}^{{r}} }\right)\:=\:? \\ $$
Answered by witcher3 last updated on 21/Jan/23
sin^3 (x)=−(1/4)(((e^(3ix) −e^(−3ix) −3e^(ix) +3e^(−ix) )/(2i)))  =−(1/4)sin(3x)+(3/4)sin(x)  S=Σ_(r=1) ^n 3^(r−1) sin^3 ((θ/3^r ))=−(1/4)(Σ_(r=1) ^n 3^(r−1) sin((θ/3^(r−1) ))−Σ_(r=1) ^n 3^r sin((θ/3^r )))  =−(1/4)(sin(θ)−3^n sin((θ/3^n )))
$$\mathrm{sin}^{\mathrm{3}} \left(\mathrm{x}\right)=−\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{e}^{\mathrm{3ix}} −\mathrm{e}^{−\mathrm{3ix}} −\mathrm{3e}^{\mathrm{ix}} +\mathrm{3e}^{−\mathrm{ix}} }{\mathrm{2i}}\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\left(\mathrm{3x}\right)+\frac{\mathrm{3}}{\mathrm{4}}\mathrm{sin}\left(\mathrm{x}\right) \\ $$$$\mathrm{S}=\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{3}^{\mathrm{r}−\mathrm{1}} \mathrm{sin}^{\mathrm{3}} \left(\frac{\theta}{\mathrm{3}^{\mathrm{r}} }\right)=−\frac{\mathrm{1}}{\mathrm{4}}\left(\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{3}^{\mathrm{r}−\mathrm{1}} \mathrm{sin}\left(\frac{\theta}{\mathrm{3}^{\mathrm{r}−\mathrm{1}} }\right)−\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{3}^{\mathrm{r}} \mathrm{sin}\left(\frac{\theta}{\mathrm{3}^{\mathrm{r}} }\right)\right) \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{sin}\left(\theta\right)−\mathrm{3}^{\mathrm{n}} \mathrm{sin}\left(\frac{\theta}{\mathrm{3}^{\mathrm{n}} }\right)\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *