Menu Close

r-1-n-r-1-3-




Question Number 45720 by Tawa1 last updated on 15/Oct/18
𝚺_(r = 1) ^n   (r + 1)^3
nr=1(r+1)3
Commented by math khazana by abdo last updated on 15/Oct/18
=Σ_(k=2) ^(n+1)  k^3 =(((n+1)^2 (n+2)^2 )/4)−1 .
=k=2n+1k3=(n+1)2(n+2)241.
Commented by Tawa1 last updated on 15/Oct/18
How sir ??.  please explain,  God bless you sir
Howsir??.pleaseexplain,Godblessyousir
Commented by math khazana by abdo last updated on 16/Oct/18
changement ofi ndice r+1=k give  Σ_(r=1) ^n (r+1)^3 =Σ_(k=2) ^(n+1)  k^3  but we have proved that  Σ_(k=1) ^n  k^3 =((n^2 (n+1)^2 )/4) ⇒Σ_(k=2) ^(n+1) k^3   =Σ_(k=1) ^(n+1) k^3 −1 =(((n+1)^2 (n+2)^2 )/4) −1 .
changementofindicer+1=kgiver=1n(r+1)3=k=2n+1k3butwehaveprovedthatk=1nk3=n2(n+1)24k=2n+1k3=k=1n+1k31=(n+1)2(n+2)241.
Commented by Tawa1 last updated on 16/Oct/18
God bless you sir
Godblessyousir
Commented by maxmathsup by imad last updated on 16/Oct/18
you are welcome sir.
youarewelcomesir.
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Oct/18
T_r =(r+1)^3 =r^3 +3.r^2 .1+3.r.1^2 +1^3   T_r =r^3 +3r^2 +3r+1  T_1 =1^3 +3×1^2 +3×1+1  T_2 =2^3 +3×2^2 +3×2+1  T_3 =3^3 +3×3^2 +3×3+1  T_4 =4^3 +3×4^2 +3×4+1  ...  ...  T_n =n^3 +3×n^2 +3×n+1  add them...  S_n =(1^3 +2^3 +3^3 +...+n^3 )+3(1^2 +2^2 +3^2 ...+n^2 )+          3(1+2+3+...+n)+(1+1+1...upto n times)  S_n ={((n(n+1))/2)}^2 +3×((n(n+1)(2n+1))/6)+3×((n(n+1))/2)+     n×1  ans
Tr=(r+1)3=r3+3.r2.1+3.r.12+13Tr=r3+3r2+3r+1T1=13+3×12+3×1+1T2=23+3×22+3×2+1T3=33+3×32+3×3+1T4=43+3×42+3×4+1Tn=n3+3×n2+3×n+1addthemSn=(13+23+33++n3)+3(12+22+32+n2)+3(1+2+3++n)+(1+1+1uptontimes)Sn={n(n+1)2}2+3×n(n+1)(2n+1)6+3×n(n+1)2+n×1ans
Commented by Tawa1 last updated on 16/Oct/18
God bless you sir
Godblessyousir
Answered by MrW3 last updated on 16/Oct/18
generally for 1≤p≤n,  Σ_(r=1) ^n (r+p)^3 =Σ_(k=p+1) ^(p+n) k^3 =Σ_(k=1) ^(p+n) k^3 −Σ_(k=1) ^p k^3   =(((p+n)^2 (p+n+1)^2 )/4)−((p^2 (p+1)^2 )/4)
generallyfor1pn,nr=1(r+p)3=p+nk=p+1k3=p+nk=1k3pk=1k3=(p+n)2(p+n+1)24p2(p+1)24
Commented by Tawa1 last updated on 16/Oct/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *