Menu Close

r-1-r-s-n-s-1-n-rs-n-n-1-n-1-3n-2-12-




Question Number 151037 by qaz last updated on 17/Aug/21
Σ_(r=1,r≠s) ^n   Σ_(s=1) ^n ((rs)/(n(n−1)))=^? (((n+1)(3n+2))/(12))
nr=1,rsns=1rsn(n1)=?(n+1)(3n+2)12
Answered by mindispower last updated on 17/Aug/21
=Σ_(r=1) ^(r=n) Σ_(s=1) ^n ((rs)/(n(n−1)))−Σ_(s=1) ^n (s^2 /(n(n−1)))  =((n^2 (n+1)^2 )/(4n(n−1)))−((n(2n+1)(n+1))/(6n(n−1)))  =((n(n+1)(3n(n+1)−2(2n+1)))/(12n(n−1)))  =(((n+1)(3n^2 −n−2))/(12(n−1))) =((n+1)/(12(n−1))).3(n−1)(n+(2/3))  =(((n+1)(3n+2))/(12))
=r=nr=1ns=1rsn(n1)ns=1s2n(n1)=n2(n+1)24n(n1)n(2n+1)(n+1)6n(n1)=n(n+1)(3n(n+1)2(2n+1))12n(n1)=(n+1)(3n2n2)12(n1)=n+112(n1).3(n1)(n+23)=(n+1)(3n+2)12

Leave a Reply

Your email address will not be published. Required fields are marked *