Menu Close

R-3sin-5-4cos-5-5cos-58-35-2-cos-13-cos-5-




Question Number 192536 by cortano12 last updated on 20/May/23
  R=((3sin 5°+4cos 5°−5cos 58°+35(√2) cos 13°)/(cos 5°))=?
$$\:\:\mathrm{R}=\frac{\mathrm{3sin}\:\mathrm{5}°+\mathrm{4cos}\:\mathrm{5}°−\mathrm{5cos}\:\mathrm{58}°+\mathrm{35}\sqrt{\mathrm{2}}\:\mathrm{cos}\:\mathrm{13}°}{\mathrm{cos}\:\mathrm{5}°}=? \\ $$
Answered by Tomal last updated on 20/May/23
 R=((3sin 5°+4cos 5°−5cos 58°+35(√2) cos 13°)/(cos 5°))=?  R=(((3×0.0872)+(4×0.996)−(5×0.53)+(35 ⌢)/)2×0.974)
$$\:\mathrm{R}=\frac{\mathrm{3sin}\:\mathrm{5}°+\mathrm{4cos}\:\mathrm{5}°−\mathrm{5cos}\:\mathrm{58}°+\mathrm{35}\sqrt{\mathrm{2}}\:\mathrm{cos}\:\mathrm{13}°}{\mathrm{cos}\:\mathrm{5}°}=? \\ $$$$\left.{R}=\frac{\left(\mathrm{3}×\mathrm{0}.\mathrm{0872}\right)+\left(\mathrm{4}×\mathrm{0}.\mathrm{996}\right)−\left(\mathrm{5}×\mathrm{0}.\mathrm{53}\right)+\left(\mathrm{35}\:\underbrace{\frown}\right.}{}\mathrm{2}×\mathrm{0}.\mathrm{974}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *