Menu Close

Random-Problem-pi-4-pi-2-7sin-x-3cos-x-dx-By-getting-the-antiderivative-of-the-trigonometric-functions-sin-x-dx-cos-x-c-cos-x-dx-sin-x-c-7-sin-x-3-cos-x-pi-4-




Question Number 150037 by RoswelCod2003 last updated on 09/Aug/21
Random Problem:  ∫_(π/4) ^(π/2)  (−7sin x + 3cos x) dx    By getting the antiderivative of the trigonometric functions:  ∫ sin(x) dx = −cos x + c  ∫ cos(x) dx = sin x + c  = −7 ∫ sin x  +  3 ∫ cos x ∣_(π/4) ^(π/2)  = −7(− cos x) + 3(sin x) ∣_(π/4) ^(π/2)   = 7 cos x + 3sin x ∣_(π/4) ^(π/2)     Evaluate it to the top and bottom limit of integration:    = (7 cos ∙ (π/2) + 3 sin ∙ (π/2))− (7 cos ∙ (π/(4 ))  + 3 sin ∙ (π/4) )  =[7(0) + 3(1)] − [7(((√2)/2)) + 3(((√2)/2))]  = 3 − ((7(√2))/2) − ((3(√2))/2)  = 3 − ((10(√2))/2) or 3 − 5(√2)    Answer: 3 − 5(√2)    Solution by Roswel:)
$${Random}\:{Problem}: \\ $$$$\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:\left(−\mathrm{7sin}\:{x}\:+\:\mathrm{3cos}\:{x}\right)\:{dx} \\ $$$$ \\ $$$${By}\:{getting}\:{the}\:{antiderivative}\:{of}\:{the}\:{trigonometric}\:{functions}: \\ $$$$\int\:\mathrm{sin}\left({x}\right)\:{dx}\:=\:−\mathrm{cos}\:{x}\:+\:{c} \\ $$$$\int\:\mathrm{cos}\left({x}\right)\:{dx}\:=\:\mathrm{sin}\:{x}\:+\:{c} \\ $$$$=\:−\mathrm{7}\:\int\:\mathrm{sin}\:{x}\:\:+\:\:\mathrm{3}\:\int\:\mathrm{cos}\:{x}\:\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\mid}}\:=\:−\mathrm{7}\left(−\:\mathrm{cos}\:{x}\right)\:+\:\mathrm{3}\left(\mathrm{sin}\:{x}\right)\:\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\mid}} \\ $$$$=\:\mathrm{7}\:\mathrm{cos}\:{x}\:+\:\mathrm{3sin}\:{x}\:\underset{\frac{\pi}{\mathrm{4}}} {\overset{\frac{\pi}{\mathrm{2}}} {\mid}} \\ $$$$ \\ $$$${Evaluate}\:{it}\:{to}\:{the}\:{top}\:{and}\:{bottom}\:{limit}\:{of}\:{integration}: \\ $$$$ \\ $$$$=\:\left(\mathrm{7}\:\mathrm{cos}\:\centerdot\:\frac{\pi}{\mathrm{2}}\:+\:\mathrm{3}\:\mathrm{sin}\:\centerdot\:\frac{\pi}{\mathrm{2}}\right)−\:\left(\mathrm{7}\:\mathrm{cos}\:\centerdot\:\frac{\pi}{\mathrm{4}\:}\:\:+\:\mathrm{3}\:\mathrm{sin}\:\centerdot\:\frac{\pi}{\mathrm{4}}\:\right) \\ $$$$=\left[\mathrm{7}\left(\mathrm{0}\right)\:+\:\mathrm{3}\left(\mathrm{1}\right)\right]\:−\:\left[\mathrm{7}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\:+\:\mathrm{3}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\right)\right] \\ $$$$=\:\mathrm{3}\:−\:\frac{\mathrm{7}\sqrt{\mathrm{2}}}{\mathrm{2}}\:−\:\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$=\:\mathrm{3}\:−\:\frac{\mathrm{10}\sqrt{\mathrm{2}}}{\mathrm{2}}\:{or}\:\mathrm{3}\:−\:\mathrm{5}\sqrt{\mathrm{2}} \\ $$$$ \\ $$$${Answer}:\:\mathrm{3}\:−\:\mathrm{5}\sqrt{\mathrm{2}} \\ $$$$ \\ $$$$\left.{Solution}\:{by}\:{Roswel}:\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *