Random-Problem-pi-4-pi-2-7sin-x-3cos-x-dx-By-getting-the-antiderivative-of-the-trigonometric-functions-sin-x-dx-cos-x-c-cos-x-dx-sin-x-c-7-sin-x-3-cos-x-pi-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 150037 by RoswelCod2003 last updated on 09/Aug/21 RandomProblem:∫π2π4(−7sinx+3cosx)dxBygettingtheantiderivativeofthetrigonometricfunctions:∫sin(x)dx=−cosx+c∫cos(x)dx=sinx+c=−7∫sinx+3∫cosx∣π2π4=−7(−cosx)+3(sinx)∣π2π4=7cosx+3sinx∣π2π4Evaluateittothetopandbottomlimitofintegration:=(7cos⋅π2+3sin⋅π2)−(7cos⋅π4+3sin⋅π4)=[7(0)+3(1)]−[7(22)+3(22)]=3−722−322=3−1022or3−52Answer:3−52SolutionbyRoswel:) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Let-PQRS-be-a-rectangle-such-that-PQ-a-and-QR-b-Suppose-r-1-is-the-radius-of-the-circle-passing-through-P-and-Q-and-touching-RS-and-r-2-is-the-radius-of-the-circle-passing-through-Q-and-R-and-tNext Next post: 2-calculate-I-1-dx-1-x-2-1-x-2-1-find-lim-0-I- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.