Menu Close

Random-Problem-pi-4-pi-2-7sin-x-3cos-x-dx-By-getting-the-antiderivative-of-the-trigonometric-functions-sin-x-dx-cos-x-c-cos-x-dx-sin-x-c-7-sin-x-3-cos-x-pi-4-




Question Number 150037 by RoswelCod2003 last updated on 09/Aug/21
Random Problem:  ∫_(π/4) ^(π/2)  (−7sin x + 3cos x) dx    By getting the antiderivative of the trigonometric functions:  ∫ sin(x) dx = −cos x + c  ∫ cos(x) dx = sin x + c  = −7 ∫ sin x  +  3 ∫ cos x ∣_(π/4) ^(π/2)  = −7(− cos x) + 3(sin x) ∣_(π/4) ^(π/2)   = 7 cos x + 3sin x ∣_(π/4) ^(π/2)     Evaluate it to the top and bottom limit of integration:    = (7 cos ∙ (π/2) + 3 sin ∙ (π/2))− (7 cos ∙ (π/(4 ))  + 3 sin ∙ (π/4) )  =[7(0) + 3(1)] − [7(((√2)/2)) + 3(((√2)/2))]  = 3 − ((7(√2))/2) − ((3(√2))/2)  = 3 − ((10(√2))/2) or 3 − 5(√2)    Answer: 3 − 5(√2)    Solution by Roswel:)
RandomProblem:π2π4(7sinx+3cosx)dxBygettingtheantiderivativeofthetrigonometricfunctions:sin(x)dx=cosx+ccos(x)dx=sinx+c=7sinx+3cosxπ2π4=7(cosx)+3(sinx)π2π4=7cosx+3sinxπ2π4Evaluateittothetopandbottomlimitofintegration:=(7cosπ2+3sinπ2)(7cosπ4+3sinπ4)=[7(0)+3(1)][7(22)+3(22)]=3722322=31022or352Answer:352SolutionbyRoswel:)

Leave a Reply

Your email address will not be published. Required fields are marked *