Menu Close

Range-of-function-f-x-6-x-3-x-6-x-3-x-2-




Question Number 31865 by rahul 19 last updated on 16/Mar/18
Range of function :  f(x)= 6^x +3^x +6^(−x) +3^(−x) +2.
$${Range}\:{of}\:{function}\:: \\ $$$${f}\left({x}\right)=\:\mathrm{6}^{{x}} +\mathrm{3}^{{x}} +\mathrm{6}^{−{x}} +\mathrm{3}^{−{x}} +\mathrm{2}. \\ $$
Commented by rahul 19 last updated on 16/Mar/18
my try :  f(x)= (6^(x/2) +6^((−x)/2) )^2 + (3^(x/2) +3^((−x)/2) )^2 −2≥6.  hence range is [−6,∞).
$${my}\:{try}\:: \\ $$$${f}\left({x}\right)=\:\left(\mathrm{6}^{\frac{{x}}{\mathrm{2}}} +\mathrm{6}^{\frac{−{x}}{\mathrm{2}}} \right)^{\mathrm{2}} +\:\left(\mathrm{3}^{\frac{{x}}{\mathrm{2}}} +\mathrm{3}^{\frac{−{x}}{\mathrm{2}}} \right)^{\mathrm{2}} −\mathrm{2}\geqslant\mathrm{6}. \\ $$$${hence}\:{range}\:{is}\:\left[−\mathrm{6},\infty\right). \\ $$
Commented by rahul 19 last updated on 16/Mar/18
but ans. given is [6,∞).
$${but}\:{ans}.\:{given}\:{is}\:\left[\mathrm{6},\infty\right).\: \\ $$
Commented by Tinkutara last updated on 16/Mar/18
Apply AM-GM.
Commented by rahul 19 last updated on 16/Mar/18
plz tell where am i wrong ?
$${plz}\:{tell}\:{where}\:{am}\:{i}\:{wrong}\:? \\ $$
Commented by Tinkutara last updated on 16/Mar/18
Because you assumed minimum  value of 6^(x/2) +6^((−x)/2)  to be 0 which is not.  6^(x/2) +6^((−x)/2)  has minimum value 2.
$${Because}\:{you}\:{assumed}\:{minimum} \\ $$$${value}\:{of}\:\mathrm{6}^{\frac{{x}}{\mathrm{2}}} +\mathrm{6}^{\frac{−{x}}{\mathrm{2}}} \:{to}\:{be}\:\mathrm{0}\:{which}\:{is}\:{not}. \\ $$$$\mathrm{6}^{\frac{{x}}{\mathrm{2}}} +\mathrm{6}^{\frac{−{x}}{\mathrm{2}}} \:{has}\:{minimum}\:{value}\:\mathrm{2}. \\ $$
Commented by rahul 19 last updated on 16/Mar/18
ok thanks !!
$${ok}\:{thanks}\:!! \\ $$
Answered by mrW2 last updated on 16/Mar/18
f(x)=(6^x +6^(−x) )+(3^x +3^(−x) )+2  ≥2+2+2=6
$${f}\left({x}\right)=\left(\mathrm{6}^{{x}} +\mathrm{6}^{−{x}} \right)+\left(\mathrm{3}^{{x}} +\mathrm{3}^{−{x}} \right)+\mathrm{2} \\ $$$$\geqslant\mathrm{2}+\mathrm{2}+\mathrm{2}=\mathrm{6} \\ $$
Commented by rahul 19 last updated on 16/Mar/18
yes sir, i have got the ans.  thank u sir!
$${yes}\:{sir},\:{i}\:{have}\:{got}\:{the}\:{ans}. \\ $$$${thank}\:{u}\:{sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *