Menu Close

Re-soudre-2-u-x-2-2-u-y-2-e-2x-y-




Question Number 163533 by Ar Brandon last updated on 07/Jan/22
Re^� soudre      (∂^2 u/∂x^2 )+(∂^2 u/∂y^2 )=e^(2x+y)
$$\mathrm{R}\acute {\mathrm{e}soudre}\:\:\:\:\:\:\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {u}}{\partial{y}^{\mathrm{2}} }={e}^{\mathrm{2}{x}+{y}} \\ $$
Commented by Rasheed.Sindhi last updated on 08/Jan/22
Welcome Brandon sir with your  profile photo!
$${Welcome}\:{Brandon}\:{sir}\:{with}\:{your} \\ $$$${profile}\:{photo}! \\ $$
Commented by mkam last updated on 08/Jan/22
(D^2  + D^′ ^2  ) u = e^(2x+y)     U_p  = (1/(D^2 +D^′ ^2 )) e^(ax +b y)   : D^2  + D^′ ^2  ≠ 0    e^(2x+y)  ⇒ a = 2 , b = 1    D (a, b ) = D ( 2 , 1 ) = 2^2  + 1^2  = 5 ≠0    ∴ U_p  = (1/5) e^(2x + y)     ⊂ m . t ⊃
$$\left(\boldsymbol{{D}}^{\mathrm{2}} \:+\:\boldsymbol{{D}}^{'} \:^{\mathrm{2}} \:\right)\:\boldsymbol{{u}}\:=\:\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}+\boldsymbol{{y}}} \\ $$$$ \\ $$$$\boldsymbol{{U}}_{\boldsymbol{{p}}} \:=\:\frac{\mathrm{1}}{\boldsymbol{{D}}^{\mathrm{2}} +\boldsymbol{{D}}^{'} \:^{\mathrm{2}} }\:\boldsymbol{{e}}^{\boldsymbol{{ax}}\:+\boldsymbol{{b}}\:\boldsymbol{{y}}} \:\::\:\boldsymbol{{D}}^{\mathrm{2}} \:+\:\boldsymbol{{D}}^{'} \:^{\mathrm{2}} \:\neq\:\mathrm{0} \\ $$$$ \\ $$$$\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}+\boldsymbol{{y}}} \:\Rightarrow\:\boldsymbol{{a}}\:=\:\mathrm{2}\:,\:\boldsymbol{{b}}\:=\:\mathrm{1} \\ $$$$ \\ $$$$\boldsymbol{{D}}\:\left(\boldsymbol{{a}},\:\boldsymbol{{b}}\:\right)\:=\:\boldsymbol{{D}}\:\left(\:\mathrm{2}\:,\:\mathrm{1}\:\right)\:=\:\mathrm{2}^{\mathrm{2}} \:+\:\mathrm{1}^{\mathrm{2}} \:=\:\mathrm{5}\:\neq\mathrm{0} \\ $$$$ \\ $$$$\therefore\:\boldsymbol{{U}}_{{p}} \:=\:\frac{\mathrm{1}}{\mathrm{5}}\:\boldsymbol{{e}}^{\mathrm{2}\boldsymbol{{x}}\:+\:\boldsymbol{{y}}} \\ $$$$ \\ $$$$\subset\:\boldsymbol{{m}}\:.\:\boldsymbol{{t}}\:\supset \\ $$$$ \\ $$
Commented by Ar Brandon last updated on 08/Jan/22
Thanks Sir. But I just realized I omitted a constant in front of e. Sorry!����
Commented by Ar Brandon last updated on 08/Jan/22
Thank you Sir Rasheed ��
Commented by mkam last updated on 08/Jan/22
you are welcome sir if the constant = 10   then U_p  = ((10)/5) e^(2x+y)  = 2 e^(2x+y )
$${you}\:{are}\:{welcome}\:{sir}\:{if}\:{the}\:{constant}\:=\:\mathrm{10}\: \\ $$$${then}\:{U}_{{p}} \:=\:\frac{\mathrm{10}}{\mathrm{5}}\:{e}^{\mathrm{2}{x}+{y}} \:=\:\mathrm{2}\:{e}^{\mathrm{2}{x}+{y}\:} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *