Menu Close

Re-soudre-8-sin-2-x-1-1-cos-2-x-tan-2-x-cotan-2-x-4-3-




Question Number 145305 by puissant last updated on 04/Jul/21
Re^� soudre   (((8/(sin^2 (x))) + 1)/((1/(cos^2 (x))) + tan^2 (x))) = cotan^2 (x)+(4/3)
$$\mathrm{R}\acute {\mathrm{e}soudre}\:\:\:\frac{\frac{\mathrm{8}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}\:+\:\mathrm{1}}{\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\:+\:\mathrm{tan}^{\mathrm{2}} \left(\mathrm{x}\right)}\:=\:\mathrm{cotan}^{\mathrm{2}} \left(\mathrm{x}\right)+\frac{\mathrm{4}}{\mathrm{3}} \\ $$
Commented by imjagoll last updated on 04/Jul/21
put u = cos^2 x
$$\mathrm{put}\:\mathrm{u}\:=\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}\: \\ $$
Commented by puissant last updated on 04/Jul/21
please  do
$$\mathrm{please}\:\:\mathrm{do} \\ $$
Answered by imjagoll last updated on 04/Jul/21
 ((8+sin^2 x)/(2sec^2 x−1)) = cos^2 x+((4sin^2 x)/3)  ⇒((9−cos^2 x)/(2sec^2 x−1)) = ((4−cos^2 x)/3)  ⇒((9−u)/((2/u)−1)) = ((4−u)/3)  ⇒((9u−u^2 )/(2−u)) = ((4−u)/3)  ⇒27u−3u^2 =8−6u+u^2   ⇒4u^2 −33u+8=0  ⇒(4u−1)(u−2)=0  ⇒u = (1/4)=cos^2 x  ⇒cos x = ± (1/2)
$$\:\frac{\mathrm{8}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{2sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}}\:=\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}+\frac{\mathrm{4sin}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{\mathrm{9}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{2sec}\:^{\mathrm{2}} \mathrm{x}−\mathrm{1}}\:=\:\frac{\mathrm{4}−\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{\mathrm{9}−\mathrm{u}}{\frac{\mathrm{2}}{\mathrm{u}}−\mathrm{1}}\:=\:\frac{\mathrm{4}−\mathrm{u}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{\mathrm{9u}−\mathrm{u}^{\mathrm{2}} }{\mathrm{2}−\mathrm{u}}\:=\:\frac{\mathrm{4}−\mathrm{u}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{27u}−\mathrm{3u}^{\mathrm{2}} =\mathrm{8}−\mathrm{6u}+\mathrm{u}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4u}^{\mathrm{2}} −\mathrm{33u}+\mathrm{8}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{4u}−\mathrm{1}\right)\left(\mathrm{u}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{u}\:=\:\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{cos}\:^{\mathrm{2}} \mathrm{x} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{x}\:=\:\pm\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *