Menu Close

Reduct-it-z-8-z-1-z-5-z-1-




Question Number 144334 by mathdanisur last updated on 24/Jun/21
Reduct it:  ((z^8  + z + 1)/(z^5  + z + 1))
$${Reduct}\:{it}:\:\:\frac{\boldsymbol{{z}}^{\mathrm{8}} \:+\:\boldsymbol{{z}}\:+\:\mathrm{1}}{\boldsymbol{{z}}^{\mathrm{5}} \:+\:\boldsymbol{{z}}\:+\:\mathrm{1}} \\ $$
Answered by Olaf_Thorendsen last updated on 24/Jun/21
Z = ((z^8 +z+1)/(z^5 +z+1))  Z = z^3 −((z^4 +z^3 −z−1)/(z^5 +z+1))  Z = z^3 −(((z+1)(z^3 −1))/(z^5 +z+1))  Z = z^3 −(((z+1)(z−1)(z^2 +z+1))/(z^5 +z+1))
$$\mathrm{Z}\:=\:\frac{{z}^{\mathrm{8}} +{z}+\mathrm{1}}{{z}^{\mathrm{5}} +{z}+\mathrm{1}} \\ $$$$\mathrm{Z}\:=\:{z}^{\mathrm{3}} −\frac{{z}^{\mathrm{4}} +{z}^{\mathrm{3}} −{z}−\mathrm{1}}{{z}^{\mathrm{5}} +{z}+\mathrm{1}} \\ $$$$\mathrm{Z}\:=\:{z}^{\mathrm{3}} −\frac{\left({z}+\mathrm{1}\right)\left({z}^{\mathrm{3}} −\mathrm{1}\right)}{{z}^{\mathrm{5}} +{z}+\mathrm{1}} \\ $$$$\mathrm{Z}\:=\:{z}^{\mathrm{3}} −\frac{\left({z}+\mathrm{1}\right)\left({z}−\mathrm{1}\right)\left({z}^{\mathrm{2}} +{z}+\mathrm{1}\right)}{{z}^{\mathrm{5}} +{z}+\mathrm{1}} \\ $$
Commented by mathdanisur last updated on 25/Jun/21
thanks Sir cool
$${thanks}\:{Sir}\:{cool} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *