Menu Close

Refer-to-Q181319-x-4-1-x-4-x-2-dx-x-4-1-x-4-x-2-1-x-2-x-2-x-1-x-2-x-2-x-1-1-1-4-2x-1-1-x-2-x-1-1-4-2x-1-1-x-2-x-1-1-4-log-x-2-x-1-1-4-




Question Number 181403 by a.lgnaoui last updated on 24/Nov/22
Refer to Q181319  ∫((x^4 +1)/(x^4 +x+2))dx  ((x^4 +1)/(x^4 +x+2))=1+(x/(2(x^2 +x+1)))−(x/(2(x^2 −x+1)))  =1+(1/4)[(((2x+1)−1)/(x^2 +x+1))−(1/4)×(((2x−1)+1)/((x^2 −x+1)))  =(1/4)×[log(x^2 +x+1)]^′ −(1/4)×((1/([((√3)/2)(x+(1/2))^2 ]+1)))  −((1/4)[log(x^2 −x+1)]^′ +(1/4)((1/([((√3)/2)×(x−(1/2)]^2 +1))))  first with [((√3)/2)( x+(1/2))]=u   ∫(1/(u^2 +1))du=arctg(u)  and v=[((√3)/2)(x−(1/2) )]=v   ∫(dv/(1+v^2 ))=arctg(v)  ...............
RefertoQ181319x4+1x4+x+2dxx4+1x4+x+2=1+x2(x2+x+1)x2(x2x+1)=1+14[(2x+1)1x2+x+114×(2x1)+1(x2x+1)=14×[log(x2+x+1)]14×(1[32(x+12)2]+1)(14[log(x2x+1)]+14(1[32×(x12]2+1))firstwith[32(x+12)]=u1u2+1du=arctg(u)andv=[32(x12)]=vdv1+v2=arctg(v)
Answered by ARUNG_Brandon_MBU last updated on 24/Nov/22
I=∫((x^4 +1)/(x^4 +x^2 +1))dx=∫(((x^4 +x^2 +1)−x^2 )/(x^4 +x^2 +1))dx    =∫(1−(x^2 /(x^4 +x^2 +1)))dx=x−∫(x^2 /(x^4 +x^2 +1))dx    =x−(1/2)∫(((x^2 +1)+(x^2 −1))/(x^4 +x^2 +1))dx    =x−(1/2)∫((x^2 +1)/(x^4 +x^2 +1))dx−(1/2)∫((x^2 −1)/(x^4 +x^2 +1))dx    =x−(1/2)∫((1+(1/x^2 ))/(x^2 +1+(1/x^2 )))dx−(1/2)∫((1−(1/x^2 ))/(x^2 +1+(1/x^2 )))dx    =x−(1/2)∫((1+(1/x^2 ))/((x−(1/x))^2 +3))dx−(1/2)∫((1−(1/x^2 ))/((x+(1/x))^2 −1))dx    =x−(1/(2(√3)))arctan[(1/( (√3)))(x−(1/x))]+(1/2)arcoth(x+(1/x))+C    =x−((√3)/6)arctan(((x^2 −1)/(x(√3))))+(1/4)ln∣((x^2 +x+1)/(x^2 −x+1))∣+C
I=x4+1x4+x2+1dx=(x4+x2+1)x2x4+x2+1dx=(1x2x4+x2+1)dx=xx2x4+x2+1dx=x12(x2+1)+(x21)x4+x2+1dx=x12x2+1x4+x2+1dx12x21x4+x2+1dx=x121+1x2x2+1+1x2dx1211x2x2+1+1x2dx=x121+1x2(x1x)2+3dx1211x2(x+1x)21dx=x123arctan[13(x1x)]+12arcoth(x+1x)+C=x36arctan(x21x3)+14lnx2+x+1x2x+1+C

Leave a Reply

Your email address will not be published. Required fields are marked *