Menu Close

related-to-Q-19333-the-side-lengthes-of-a-triangle-are-integer-if-the-perimeter-of-the-triangle-is-100-how-many-different-triangles-exist-what-is-the-maximum-area-of-them-




Question Number 19388 by mrW1 last updated on 10/Aug/17
related to Q.19333  the side lengthes of a triangle are   integer. if the perimeter of the triangle  is 100, how many different triangles  exist? what is the maximum area of  them?
$$\mathrm{related}\:\mathrm{to}\:\mathrm{Q}.\mathrm{19333} \\ $$$$\mathrm{the}\:\mathrm{side}\:\mathrm{lengthes}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{are}\: \\ $$$$\mathrm{integer}.\:\mathrm{if}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$$\mathrm{is}\:\mathrm{100},\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}\:\mathrm{triangles} \\ $$$$\mathrm{exist}?\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{them}? \\ $$
Commented by mrW1 last updated on 10/Aug/17
I think A_(max) =340(√2) with side lengthes  34/33/33
$$\mathrm{I}\:\mathrm{think}\:\mathrm{A}_{\mathrm{max}} =\mathrm{340}\sqrt{\mathrm{2}}\:\mathrm{with}\:\mathrm{side}\:\mathrm{lengthes} \\ $$$$\mathrm{34}/\mathrm{33}/\mathrm{33} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *