Menu Close

repost-an-unsolved-question-Q182552-Find-the-period-of-the-following-a-sin-4x-sin-3x-b-sin-pix-cos-x-c-2-sin-2-3x-3-tan-4x-4-cot-6x-cosec-8x-sec-3-10x-cot-12x-




Question Number 183563 by CrispyXYZ last updated on 27/Dec/22
repost an unsolved question Q182552  Find the period of the following:   a• sin 4x sin 3x   b• sin πx+ cos x   c• ((2 sin^2  3x− 3 tan 4x+ 4 cot 6x)/(∣cosec 8x∣− sec^3  10x+ (√(cot 12x))))
$$\mathrm{repost}\:\mathrm{an}\:\mathrm{unsolved}\:\mathrm{question}\:\mathrm{Q182552} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{period}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}: \\ $$$$\:{a}\bullet\:\mathrm{sin}\:\mathrm{4}{x}\:\mathrm{sin}\:\mathrm{3}{x} \\ $$$$\:{b}\bullet\:\mathrm{sin}\:\pi{x}+\:\mathrm{cos}\:{x} \\ $$$$\:{c}\bullet\:\frac{\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{3}{x}−\:\mathrm{3}\:\mathrm{tan}\:\mathrm{4}{x}+\:\mathrm{4}\:\mathrm{cot}\:\mathrm{6}{x}}{\mid\mathrm{cosec}\:\mathrm{8}{x}\mid−\:\mathrm{sec}^{\mathrm{3}} \:\mathrm{10}{x}+\:\sqrt{\mathrm{cot}\:\mathrm{12}{x}}} \\ $$
Commented by Acem last updated on 27/Dec/22
Thanks friend for reminding us this question,   hope from all sharing their methodes.
$${Thanks}\:{friend}\:{for}\:{reminding}\:{us}\:{this}\:{question}, \\ $$$$\:{hope}\:{from}\:{all}\:{sharing}\:{their}\:{methodes}. \\ $$
Answered by mr W last updated on 27/Dec/22
(a)  f(x)=sin 4x sin 3x  4T=2nπ ⇒T=((3nπ)/6)  3T=2mπ ⇒T=((4mπ)/6)  T_(min) =2π ✓  (b)  f(x)=sin πx+cos x  πT=2nπ ⇒T=2n=even integer  ⇒T=2mπ=even integer ×π  ⇒no periodic function!  (c)  2 sin^2  3x=1−cos 6x  6T=2aπ ⇒T=((aπ×20)/(60))  8T=2bπ ⇒T=((bπ×15)/(60))  10T=2cπ ⇒T=((cπ×12)/(60))  4T=dπ ⇒T=((3dπ)/(12))  6T=eπ ⇒T=((2eπ)/(12))  12T=fπ ⇒T=((fπ)/(12))  ⇒T_(min) =π ✓
$$\left({a}\right) \\ $$$${f}\left({x}\right)=\mathrm{sin}\:\mathrm{4}{x}\:\mathrm{sin}\:\mathrm{3}{x} \\ $$$$\mathrm{4}{T}=\mathrm{2}{n}\pi\:\Rightarrow{T}=\frac{\mathrm{3}{n}\pi}{\mathrm{6}} \\ $$$$\mathrm{3}{T}=\mathrm{2}{m}\pi\:\Rightarrow{T}=\frac{\mathrm{4}{m}\pi}{\mathrm{6}} \\ $$$${T}_{{min}} =\mathrm{2}\pi\:\checkmark \\ $$$$\left({b}\right) \\ $$$${f}\left({x}\right)=\mathrm{sin}\:\pi{x}+\mathrm{cos}\:{x} \\ $$$$\pi{T}=\mathrm{2}{n}\pi\:\Rightarrow{T}=\mathrm{2}{n}={even}\:{integer} \\ $$$$\Rightarrow{T}=\mathrm{2}{m}\pi={even}\:{integer}\:×\pi \\ $$$$\Rightarrow{no}\:{periodic}\:{function}! \\ $$$$\left({c}\right) \\ $$$$\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\mathrm{3}{x}=\mathrm{1}−\mathrm{cos}\:\mathrm{6}{x} \\ $$$$\mathrm{6}{T}=\mathrm{2}{a}\pi\:\Rightarrow{T}=\frac{{a}\pi×\mathrm{20}}{\mathrm{60}} \\ $$$$\mathrm{8}{T}=\mathrm{2}{b}\pi\:\Rightarrow{T}=\frac{{b}\pi×\mathrm{15}}{\mathrm{60}} \\ $$$$\mathrm{10}{T}=\mathrm{2}{c}\pi\:\Rightarrow{T}=\frac{{c}\pi×\mathrm{12}}{\mathrm{60}} \\ $$$$\mathrm{4}{T}={d}\pi\:\Rightarrow{T}=\frac{\mathrm{3}{d}\pi}{\mathrm{12}} \\ $$$$\mathrm{6}{T}={e}\pi\:\Rightarrow{T}=\frac{\mathrm{2}{e}\pi}{\mathrm{12}} \\ $$$$\mathrm{12}{T}={f}\pi\:\Rightarrow{T}=\frac{{f}\pi}{\mathrm{12}} \\ $$$$\Rightarrow{T}_{{min}} =\pi\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *