Question Number 91786 by john santu last updated on 03/May/20
$${repost}\:{question}\:{from} \\ $$$${mr}\:{jagoll} \\ $$$$\begin{cases}{\mathrm{2}+\mathrm{6}{y}\:=\:\frac{{x}}{{y}}−\sqrt{{x}−\mathrm{2}{y}}}\\{\sqrt{{x}+\sqrt{{x}−\mathrm{2}{y}}}\:=\:{x}+\mathrm{3}{y}−\mathrm{2}\:}\end{cases} \\ $$
Commented by john santu last updated on 03/May/20
$$\left(\mathrm{1}\right)\mathrm{6}{y}\:=\:\frac{{x}−\mathrm{2}{y}}{{y}}\:−\sqrt{{x}−\mathrm{2}{y}} \\ $$$$\mathrm{6}\:=\:\frac{{x}−\mathrm{2}{y}}{{y}^{\mathrm{2}} }−\frac{\sqrt{{x}−\mathrm{2}{y}}}{{y}}\: \\ $$$${set}\:{w}\:=\:\frac{\sqrt{{x}−\mathrm{2}{y}}}{{y}}\:\Rightarrow\mathrm{6}={w}^{\mathrm{2}} −{w} \\ $$$${w}^{\mathrm{2}} −{w}−\mathrm{6}\:=\:\mathrm{0} \\ $$$$\left({w}−\mathrm{3}\right)\left({w}+\mathrm{2}\right)\:=\:\mathrm{0}\: \\ $$$$\Rightarrow\left({i}\right)\:{w}=\mathrm{3}\:=\frac{\sqrt{{x}−\mathrm{2}{y}}}{{y}}\:,{y}>\mathrm{0} \\ $$$$\sqrt{{x}−\mathrm{2}{y}}\:=\:\mathrm{3}{y}\:;\:{x}\:=\:\mathrm{9}{y}^{\mathrm{2}} +\mathrm{2}{y} \\ $$$$\Rightarrow\sqrt{{x}+\mathrm{3}{y}}\:=\:{x}+\mathrm{3}{y}−\mathrm{2} \\ $$$$\sqrt{\mathrm{9}{y}^{\mathrm{2}} +\mathrm{5}{y}}\:=\:\mathrm{9}{y}^{\mathrm{2}} +\mathrm{5}{y}−\mathrm{2} \\ $$$${set}\:\sqrt{\mathrm{9}{y}^{\mathrm{2}} +\mathrm{5}{y}}\:=\:{p},\:{p}>\mathrm{0} \\ $$$${p}^{\mathrm{2}} −{p}−\mathrm{2}=\mathrm{0}\:\Rightarrow{p}=\mathrm{2} \\ $$$$\mathrm{9}{y}^{\mathrm{2}} +\mathrm{5}{y}−\mathrm{4}=\mathrm{0} \\ $$$${y}\:=\:\frac{−\mathrm{5}\:\pm\:\mathrm{13}}{\mathrm{18}}\:\begin{cases}{{y}_{\mathrm{1}} =−\mathrm{1};\:{not}\:{solution}}\\{{y}_{\mathrm{2}} =\:\frac{\mathrm{4}}{\mathrm{9}};{x}_{\mathrm{2}} =\:\frac{\mathrm{24}}{\mathrm{9}}}\end{cases} \\ $$$$\Rightarrow\left({ii}\right)\:{w}=−\mathrm{2}\:=\frac{\sqrt{{x}−\mathrm{2}{y}}}{{y}}\:,\:{y}<\mathrm{0} \\ $$$$−\mathrm{2}{y}\:=\:\sqrt{{x}−\mathrm{2}{y}}\:\Rightarrow{x}=\mathrm{4}{y}^{\mathrm{2}} +\mathrm{2}{y} \\ $$$$\Rightarrow\sqrt{{x}−\mathrm{2}{y}}\:=\:{x}+\mathrm{3}{y}−\mathrm{2} \\ $$$$−\mathrm{2}{y}\:=\:{x}+\mathrm{3}{y}−\mathrm{2}\:;\:{x}+\mathrm{5}{y}−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{4}{y}^{\mathrm{2}} +\mathrm{7}{y}−\mathrm{2}=\mathrm{0} \\ $$$$\left(\mathrm{4}{y}−\mathrm{1}\right)\left({y}+\mathrm{2}\right)=\mathrm{0} \\ $$$$\begin{cases}{{y}_{\mathrm{3}} =\:\frac{\mathrm{1}}{\mathrm{4}};\:{no}\:{solution}}\\{{y}_{\mathrm{4}} =−\mathrm{2}\:;\:{x}_{\mathrm{4}} =\mathrm{12}\:}\end{cases} \\ $$$${finally}\:{solution}\: \\ $$$${is}\:\left(\frac{\mathrm{24}}{\mathrm{9}},\:\frac{\mathrm{4}}{\mathrm{9}}\right)\:\wedge\:\left(\mathrm{12},−\mathrm{2}\right)\: \\ $$
Commented by jagoll last updated on 03/May/20
$${waw}…{great}\:{mr}\:{john}.\:{tank}\:{a}\:{lot} \\ $$
Commented by niroj last updated on 03/May/20
✔
Commented by john santu last updated on 03/May/20
$${how}\:{to}\:{make}\:{this}\:{symbol} \\ $$$${mr}\:{Niro}? \\ $$
Commented by niroj last updated on 03/May/20
$$\:\mathrm{go}\:\mathrm{to}\:\mathrm{more}\:\&\:\mathrm{tap}\:\mathrm{last}\:\mathrm{option}\:\mathrm{add}\:\mathrm{plaintext}\:\mathrm{comment} \\ $$$$\:\mathrm{dear}\:\mathrm{mr}.\mathrm{john}\:\mathrm{santu} \\ $$
Commented by jagoll last updated on 03/May/20
good ^o^
Commented by john santu last updated on 03/May/20