Menu Close

Resolve-1-u-n-2-2u-n-1-4u-n-3-n-with-u-o-1-u-1-2-2-u-n-u-n-1-u-n-2-2sin-n-3-with-u-o-1-u-1-2-




Question Number 159560 by LEKOUMA last updated on 18/Nov/21
Resolve   1. u_(n+2) −2u_(n+1) +4u_n =3^n   with u_o =1, u_1 =−2  2. u_n =u_(n−1) −u_(n−2) +2sin (((nΠ)/3))  with u_o =1, u_1 =2
Resolve1.un+22un+1+4un=3nwithuo=1,u1=22.un=un1un2+2sin(nΠ3)withuo=1,u1=2
Answered by mr W last updated on 02/Dec/21
(1)  u_(n+2) −2u_(n+1) +4u_n =3^n   let u_n =k×3^n +v_n   k3^(n+2) −2k3^(n+1) +4k3^n =3^n   9k−6k+4k=1  7k=1  k=(1/7)  ⇒u_n =v_n +(3^n /7)  v_(n+2) −2v_(n+1) +4v_n =0  r^2 −2r+4=0  r=1±(√3)i=2(cos (π/3)±i sin (π/3))  v_n =2^(n+1) {C cos ((nπ)/3)+D sin ((nπ)/3)}  v_0 =u_0 −(1/7)=1−(1/7)=(6/7)  v_1 =u_1 −(3/7)=−2−(3/7)=−((17)/7)  v_0 =2C=(6/7)  ⇒C=(6/(14))  v_1 =4(C cos (π/3)+D sin (π/3))=−((17)/7)  2(C+(√3) D)=−((17)/7)  ⇒D=−((23)/(14(√3)))  v_n =(2^n /7)(6 cos ((nπ)/3)−((23)/( (√3))) sin ((nπ)/3))  ⇒u_n =(2^n /7)(6 cos ((nπ)/3)−((23)/( (√3))) sin ((nπ)/3))+(3^n /7)
(1)un+22un+1+4un=3nletun=k×3n+vnk3n+22k3n+1+4k3n=3n9k6k+4k=17k=1k=17un=vn+3n7vn+22vn+1+4vn=0r22r+4=0r=1±3i=2(cosπ3±isinπ3)vn=2n+1{Ccosnπ3+Dsinnπ3}v0=u017=117=67v1=u137=237=177v0=2C=67C=614v1=4(Ccosπ3+Dsinπ3)=1772(C+3D)=177D=23143vn=2n7(6cosnπ3233sinnπ3)un=2n7(6cosnπ3233sinnπ3)+3n7

Leave a Reply

Your email address will not be published. Required fields are marked *