Menu Close

resolve-inside-C-z-i-z-i-n-z-i-z-i-n-2cos-and0-lt-lt-pi-n-integer-




Question Number 27382 by abdo imad last updated on 05/Jan/18
resolve inside C  (((z−i)/(z+i)))^n +(((z+i)/(z−i)))^n = 2cosθ and0 <θ<π .n integer.
resolveinsideC(ziz+i)n+(z+izi)n=2cosθand0<θ<π.ninteger.
Answered by sma3l2996 last updated on 05/Jan/18
(((z−i)/(z+i)))^n +(((z−i)/(z+i)))^(−n) −2cosθ=0  (((z−i)/(z+i)))^(2n) +1−2(((z−i)/(z+i)))^n cosθ=0  ((((z−i)/(z+i)))^n )^2 −2(((z−i)/(z+i)))^n cosθ+(cosθ)^2 +sin^2 θ=0  ((((z−i)/(z+i)))^n −cosθ)^2 +sin^2 θ=0  (((z−i)/(z+i)))^n −cosθ=(√((−sin^2 θ)))=+_− isinθ=isinθ (because 0≤θ≤π)  so  (((z−i)/(z+i)))^n =cosθ+isinθ=e^(iθ)   ((z−i)/(z+i))=e^(i(θ/n)) ⇔z−i−(z+i)e^(i(θ/n)) =0⇔z(1−e^(i(θ/n)) )=i(1+e^(i(θ/n)) )  z=i((1+e^(i(θ/n)) )/(1−e^(i(θ/n)) ))
(ziz+i)n+(ziz+i)n2cosθ=0(ziz+i)2n+12(ziz+i)ncosθ=0((ziz+i)n)22(ziz+i)ncosθ+(cosθ)2+sin2θ=0((ziz+i)ncosθ)2+sin2θ=0(ziz+i)ncosθ=(sin2θ)=+isinθ=isinθ(because0θπ)so(ziz+i)n=cosθ+isinθ=eiθziz+i=eiθnzi(z+i)eiθn=0z(1eiθn)=i(1+eiθn)z=i1+eiθn1eiθn

Leave a Reply

Your email address will not be published. Required fields are marked *