resolve-inside-C-z-i-z-i-n-z-i-z-i-n-2cos-and0-lt-lt-pi-n-integer- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 27382 by abdo imad last updated on 05/Jan/18 resolveinsideC(z−iz+i)n+(z+iz−i)n=2cosθand0<θ<π.ninteger. Answered by sma3l2996 last updated on 05/Jan/18 (z−iz+i)n+(z−iz+i)−n−2cosθ=0(z−iz+i)2n+1−2(z−iz+i)ncosθ=0((z−iz+i)n)2−2(z−iz+i)ncosθ+(cosθ)2+sin2θ=0((z−iz+i)n−cosθ)2+sin2θ=0(z−iz+i)n−cosθ=(−sin2θ)=+−isinθ=isinθ(because0⩽θ⩽π)so(z−iz+i)n=cosθ+isinθ=eiθz−iz+i=eiθn⇔z−i−(z+i)eiθn=0⇔z(1−eiθn)=i(1+eiθn)z=i1+eiθn1−eiθn Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-158455Next Next post: let-give-p-x-1-ix-1-ix-n-1-itan-1-itan-factorize-p-x-inside-C-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.