Menu Close

Resolve-the-system-d-unknow-x-y-z-3-x-y-z-1-x-2-y-2-z-2-1-x-3-y-3-z-3-5-




Question Number 158855 by LEKOUMA last updated on 09/Nov/21
Resolve the system d′ unknow  (x, y,z) ∈ ⊂^3   x+y+z=1  x^2 +y^2 +z^2 =1  x^3 +y^3 +z^3 =−5
Resolvethesystemdunknow(x,y,z)3x+y+z=1x2+y2+z2=1x3+y3+z3=5
Answered by mr W last updated on 09/Nov/21
x+y+z=1  (x+y+z)^2 =x^2 +y^2 +z^2 +2(xy+yz+zx)  1^2 =1+2(xy+yz+zx)  ⇒xy+yz+zx=0  (x+y+z)^3 =x^3 +y^3 +z^3 +3(x+y+z)(xy+yz+zx)−3xyz  1^3 =−5+3×1×0−3xyz  ⇒xyz=−2  x,y,z are roots of  t^3 −t^2 +2=0  (t+1)(t−2t+2)=0  ⇒(x,y,z)=(−1,1+i,1−i)
x+y+z=1(x+y+z)2=x2+y2+z2+2(xy+yz+zx)12=1+2(xy+yz+zx)xy+yz+zx=0(x+y+z)3=x3+y3+z3+3(x+y+z)(xy+yz+zx)3xyz13=5+3×1×03xyzxyz=2x,y,zarerootsoft3t2+2=0(t+1)(t2t+2)=0(x,y,z)=(1,1+i,1i)
Commented by LEKOUMA last updated on 09/Nov/21
Many thanks
Manythanks

Leave a Reply

Your email address will not be published. Required fields are marked *