Question Number 160529 by LEKOUMA last updated on 01/Dec/21
$${Resolve}\: \\ $$$$\:{u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \:\:{and} \\ $$$$\:{u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5cos}\:\left({n}\frac{\Pi}{\mathrm{3}}\right),\:\:{u}_{{o}} =\mathrm{1} \\ $$
Answered by mr W last updated on 02/Dec/21
$$\left(\mathrm{2}\right) \\ $$$${u}_{{n}} =\mathrm{2}{u}_{{n}−\mathrm{1}} +\mathrm{5}\:\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}} \\ $$$${let}\:{u}_{{n}} ={v}_{{n}} +{A}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}} \\ $$$${v}_{{n}} +{A}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}}=\mathrm{2}{v}_{{n}−\mathrm{1}} +\mathrm{2}{A}\:\mathrm{sin}\:\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{3}}+\mathrm{5}\:\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}} \\ $$$${v}_{{n}} =\mathrm{2}{v}_{{n}−\mathrm{1}} +\mathrm{2}{A}\:\mathrm{sin}\:\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{3}}−{A}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}}+\mathrm{5}\:\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}} \\ $$$${let}\:\mathrm{2}{A}\:\mathrm{sin}\:\frac{\left({n}−\mathrm{1}\right)\pi}{\mathrm{3}}−{A}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}}+\mathrm{5}\:\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}}=\mathrm{0} \\ $$$${A}\left(\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}}−\sqrt{\mathrm{3}}\:\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}}\right)−{A}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}}+\mathrm{5}\:\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}}=\mathrm{0} \\ $$$$\left(\mathrm{5}−{A}\sqrt{\mathrm{3}}\:\right)\mathrm{cos}\:\frac{{n}\pi}{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow{A}=\frac{\mathrm{5}}{\:\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{u}_{{n}} ={v}_{{n}} +\frac{\mathrm{5}}{\:\sqrt{\mathrm{3}}}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}} \\ $$$${v}_{{n}} =\mathrm{2}{v}_{{n}−\mathrm{1}} =\mathrm{2}^{\mathrm{2}} {v}_{{n}−\mathrm{2}} =…=\mathrm{2}^{{n}} {v}_{\mathrm{0}} \\ $$$${u}_{\mathrm{0}} ={v}_{\mathrm{0}} +\frac{\mathrm{5}}{\:\sqrt{\mathrm{3}}}\:\mathrm{sin}\:\frac{\mathrm{0}\pi}{\mathrm{3}}=\mathrm{1}\:\Rightarrow{v}_{\mathrm{0}} =\mathrm{1} \\ $$$$\Rightarrow{v}_{{n}} =\mathrm{2}^{{n}} \\ $$$$\Rightarrow{u}_{{n}} =\mathrm{2}^{{n}} +\frac{\mathrm{5}}{\:\sqrt{\mathrm{3}}}\:\mathrm{sin}\:\frac{{n}\pi}{\mathrm{3}} \\ $$
Answered by mr W last updated on 01/Dec/21
$$\left(\mathrm{1}\right) \\ $$$${u}_{{n}} −\mathrm{3}{u}_{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \\ $$$${let}\:{u}_{{n}} ={v}_{{n}} +{k}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \\ $$$${v}_{{n}} +{k}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} −\mathrm{3}{v}_{{n}−\mathrm{1}} −\mathrm{3}{k}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}−\mathrm{1}} =\mathrm{12}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} \\ $$$${v}_{{n}} −\mathrm{3}{v}_{{n}−\mathrm{1}} −\mathrm{3}\left({k}+\mathrm{4}\right)\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} =\mathrm{0} \\ $$$${let}\:{k}=−\mathrm{4},\:{i}.{e}.\:{u}_{{n}} ={v}_{{n}} −\mathrm{4}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} ,\:{then} \\ $$$${v}_{{n}} −\mathrm{3}{v}_{{n}−\mathrm{1}} =\mathrm{0} \\ $$$${v}_{{n}} =\mathrm{3}{v}_{{n}−\mathrm{1}} =\mathrm{3}^{\mathrm{2}} {v}_{{n}−\mathrm{2}} =…=\mathrm{3}^{{n}} {v}_{\mathrm{0}} \\ $$$${u}_{\mathrm{0}} ={v}_{\mathrm{0}} −\mathrm{4}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{0}} =\mathrm{1}\:\Rightarrow{v}_{\mathrm{0}} =\mathrm{5} \\ $$$$\Rightarrow{v}_{{n}} =\mathrm{5}×\mathrm{3}^{{n}} \\ $$$$\Rightarrow{u}_{{n}} =\mathrm{5}×\mathrm{3}^{{n}} −\mathrm{4}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{n}} =\mathrm{3}^{{n}} \left(\mathrm{5}−\frac{\mathrm{1}}{\mathrm{4}^{{n}−\mathrm{1}} }\right) \\ $$
Commented by Tawa11 last updated on 01/Dec/21
$$\mathrm{Great}\:\mathrm{sir}. \\ $$