Menu Close

Resolve-u-n-3u-n-1-12-3-4-n-and-u-n-2u-n-1-5cos-n-3-u-o-1-




Question Number 160529 by LEKOUMA last updated on 01/Dec/21
Resolve    u_n −3u_(n−1) =12((3/4))^n   and   u_n =2u_(n−1) +5cos (n(Π/3)),  u_o =1
Resolveun3un1=12(34)nandun=2un1+5cos(nΠ3),uo=1
Answered by mr W last updated on 02/Dec/21
(2)  u_n =2u_(n−1) +5 cos ((nπ)/3)  let u_n =v_n +A sin ((nπ)/3)  v_n +A sin ((nπ)/3)=2v_(n−1) +2A sin (((n−1)π)/3)+5 cos ((nπ)/3)  v_n =2v_(n−1) +2A sin (((n−1)π)/3)−A sin ((nπ)/3)+5 cos ((nπ)/3)  let 2A sin (((n−1)π)/3)−A sin ((nπ)/3)+5 cos ((nπ)/3)=0  A(sin ((nπ)/3)−(√3) cos ((nπ)/3))−A sin ((nπ)/3)+5 cos ((nπ)/3)=0  (5−A(√3) )cos ((nπ)/3)=0  ⇒A=(5/( (√3)))  ⇒u_n =v_n +(5/( (√3))) sin ((nπ)/3)  v_n =2v_(n−1) =2^2 v_(n−2) =...=2^n v_0   u_0 =v_0 +(5/( (√3))) sin ((0π)/3)=1 ⇒v_0 =1  ⇒v_n =2^n   ⇒u_n =2^n +(5/( (√3))) sin ((nπ)/3)
(2)un=2un1+5cosnπ3letun=vn+Asinnπ3vn+Asinnπ3=2vn1+2Asin(n1)π3+5cosnπ3vn=2vn1+2Asin(n1)π3Asinnπ3+5cosnπ3let2Asin(n1)π3Asinnπ3+5cosnπ3=0A(sinnπ33cosnπ3)Asinnπ3+5cosnπ3=0(5A3)cosnπ3=0A=53un=vn+53sinnπ3vn=2vn1=22vn2==2nv0u0=v0+53sin0π3=1v0=1vn=2nun=2n+53sinnπ3
Answered by mr W last updated on 01/Dec/21
(1)  u_n −3u_(n−1) =12((3/4))^n   let u_n =v_n +k((3/4))^n   v_n +k((3/4))^n −3v_(n−1) −3k((3/4))^(n−1) =12((3/4))^n   v_n −3v_(n−1) −3(k+4)((3/4))^n =0  let k=−4, i.e. u_n =v_n −4((3/4))^n , then  v_n −3v_(n−1) =0  v_n =3v_(n−1) =3^2 v_(n−2) =...=3^n v_0   u_0 =v_0 −4((3/4))^0 =1 ⇒v_0 =5  ⇒v_n =5×3^n   ⇒u_n =5×3^n −4((3/4))^n =3^n (5−(1/4^(n−1) ))
(1)un3un1=12(34)nletun=vn+k(34)nvn+k(34)n3vn13k(34)n1=12(34)nvn3vn13(k+4)(34)n=0letk=4,i.e.un=vn4(34)n,thenvn3vn1=0vn=3vn1=32vn2==3nv0u0=v04(34)0=1v0=5vn=5×3nun=5×3n4(34)n=3n(514n1)
Commented by Tawa11 last updated on 01/Dec/21
Great sir.
Greatsir.

Leave a Reply

Your email address will not be published. Required fields are marked *