Menu Close

Resolve-x-2-2-y-3-x-2-y-y-x-




Question Number 168549 by LEKOUMA last updated on 13/Apr/22
Resolve  (x−2)^2 y^(′′) −3(x−2)y′+y=x
Resolve(x2)2y3(x2)y+y=x
Answered by mindispower last updated on 13/Apr/22
y=ax+b  ⇔−3a(x−2)+ax+b=x⇒ { ((−2a=1)),((6a+b=0)) :}  a=−(1/2),b=3  y=−(x/2)+3,  (x−2)^2 y′′−3(x−2)y′+y=0  x−2=t⇒y(x)=y(t+2)=z(t)  (dy/dx)=z′  ⇔t^2 z′′−3tz′+z=0  t=e^s ⇒z(t)=z(e^s )=f(s)  z′(t)=f′(s).(ds/dt)=(1/t)f′(s)  z′′(t)=−(1/t^2 )f′(s)+(1/t^2 )f′′(s)  tz′(t)=f′(s)  t^2 z′′(t)=f′′(s)−f′(s)  ⇔f′′(s)−f′(s)−3f′(s)+f(s)=0  f′′(s)−4f′(s)+f(s)=0  ⇒f(s)=ae^((2+(√3))s) +be^((2−(√3))s)   z(t)=at^(2+(√3)) +bt^(2−(√3))   y(x)=a(x−2)^(2+(√3)) +b(x−2)^(2−(√3)) −(x/2)+3
y=ax+b3a(x2)+ax+b=x{2a=16a+b=0a=12,b=3y=x2+3,(x2)2y3(x2)y+y=0x2=ty(x)=y(t+2)=z(t)dydx=zt2z3tz+z=0t=esz(t)=z(es)=f(s)z(t)=f(s).dsdt=1tf(s)z(t)=1t2f(s)+1t2f(s)tz(t)=f(s)t2z(t)=f(s)f(s)f(s)f(s)3f(s)+f(s)=0f(s)4f(s)+f(s)=0f(s)=ae(2+3)s+be(23)sz(t)=at2+3+bt23y(x)=a(x2)2+3+b(x2)23x2+3

Leave a Reply

Your email address will not be published. Required fields are marked *