Menu Close

resolve-x-3-x-6-1-into-partial-fraction-




Question Number 34182 by NECx last updated on 02/May/18
resolve (x^3 /(x^6 −1)) into partial fraction
$${resolve}\:\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{6}} −\mathrm{1}}\:{into}\:{partial}\:{fraction} \\ $$
Answered by math1967 last updated on 02/May/18
(1/2){(1/(x^3 +1)) +(1/(x^3 −1))}
$$\frac{\mathrm{1}}{\mathrm{2}}\left\{\frac{\mathrm{1}}{{x}^{\mathrm{3}} +\mathrm{1}}\:+\frac{\mathrm{1}}{{x}^{\mathrm{3}} −\mathrm{1}}\right\} \\ $$
Answered by MJS last updated on 02/May/18
x^6 −1=(x−1)(x+1)(x^2 −x+1)(x^2 +x+1)  (x^3 /(x^6 −1))=(1/6)((1/(x−1))+(1/(x+1))−((x−2)/(x^2 −x+1))−((x+2)/(x^2 +x+1)))
$${x}^{\mathrm{6}} −\mathrm{1}=\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$$$\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{6}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{6}}\left(\frac{\mathrm{1}}{{x}−\mathrm{1}}+\frac{\mathrm{1}}{{x}+\mathrm{1}}−\frac{{x}−\mathrm{2}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}−\frac{{x}+\mathrm{2}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *