Question Number 168742 by LEKOUMA last updated on 16/Apr/22
$${Resolve} \\ $$$${y}={xy}'+{a}\sqrt{\mathrm{1}+\left(\mathrm{y}'\right)^{\mathrm{2}} } \\ $$
Answered by mindispower last updated on 19/Apr/22
$$\Rightarrow \\ $$$${y}'={xy}''+{y}'+{a}\frac{\mathrm{2}{y}'{y}''}{\mathrm{2}\sqrt{\mathrm{1}+{y}'^{\mathrm{2}} }} \\ $$$${y}'={z} \\ $$$${xz}'+\frac{{zz}'}{\:\sqrt{\mathrm{1}+{z}^{\mathrm{2}} }}=\mathrm{0} \\ $$$${z}'\left({x}+{a}\frac{{z}}{\:\sqrt{\mathrm{1}+{z}^{\mathrm{2}} }}\right)=\mathrm{0} \\ $$$${by}\:{continuity}\Leftrightarrow\begin{cases}{{z}'=\mathrm{0}}\\{\frac{{z}}{\:\sqrt{\mathrm{1}+{z}^{\mathrm{2}} }}=−\frac{\mathrm{1}}{{a}}{x}}\end{cases} \\ $$$${z}={c} \\ $$$$\left.{or}\:\:{z}^{\mathrm{2}} ={x}^{\mathrm{2}} \left(\mathrm{1}+{z}^{\mathrm{2}} \right)\Rightarrow{z}^{\mathrm{2}} =\frac{\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} }{\mathrm{1}−\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} },{x}\in\right]−\mathrm{1},\mathrm{1}\left[\right. \\ $$$${z}=\frac{−{x}}{\:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }},\Rightarrow{y}=\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }+{c},{a}>\mathrm{0} \\ $$$${y}=\frac{−{x}^{\mathrm{2}} }{\:\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}+{a}\sqrt{\mathrm{1}+\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }}\Rightarrow{c}=\mathrm{0} \\ $$$${cx}+{d}={x}\left({c}\right)+{a}\sqrt{\mathrm{1}+{c}^{\mathrm{2}} } \\ $$$${d}={a}\sqrt{\mathrm{1}+{c}^{\mathrm{2}} } \\ $$$${S}=\left\{{cx}+{a}\sqrt{\mathrm{1}+{c}^{\mathrm{2}} },\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }\right\} \\ $$$$ \\ $$