Menu Close

Resoudre-dans-R-1-a-b-c-2-a-2-b-2-c-2-6-1-a-1-b-1-c-1-2-2-x-2-xy-y-2-3-y-2-yz-z-2-7-z-2-zx-x-2-13-




Question Number 180542 by a.lgnaoui last updated on 13/Nov/22
Resoudre dans R  1)  a+b+c=2  a^2 +b^2 +c^2 =6  (1/a)+(1/b)+(1/c)=(1/2)    2)  x^2 +xy+y^2 =3  y^2 +yz+z^2 =7  z^2 +zx+x^2 =13
$${Resoudre}\:{dans}\:\mathbb{R} \\ $$$$\left.\mathrm{1}\right) \\ $$$${a}+{b}+{c}=\mathrm{2} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{6} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right) \\ $$$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\mathrm{3} \\ $$$${y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\mathrm{7} \\ $$$${z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\mathrm{13} \\ $$
Answered by mr W last updated on 13/Nov/22
1)  a+b+c=2  (a+b+c)^2 =2^2 =4  a^2 +b^2 +c^2 +2(ab+bc+ca)=4  ⇒ab+bc+ca=((4−6)/2)=−1  ((ab+bc+ca)/(abc))=(1/2)  ⇒abc=2(−1)=−2  a,b,c are roots of  x^3 −2x^2 −x+2=0  (x−2)(x−1)(x+1)=0  ⇒a,b,c=(−1,1,2)
$$\left.\mathrm{1}\right) \\ $$$${a}+{b}+{c}=\mathrm{2} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} =\mathrm{4} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}\left({ab}+{bc}+{ca}\right)=\mathrm{4} \\ $$$$\Rightarrow{ab}+{bc}+{ca}=\frac{\mathrm{4}−\mathrm{6}}{\mathrm{2}}=−\mathrm{1} \\ $$$$\frac{{ab}+{bc}+{ca}}{{abc}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{abc}=\mathrm{2}\left(−\mathrm{1}\right)=−\mathrm{2} \\ $$$${a},{b},{c}\:{are}\:{roots}\:{of} \\ $$$${x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} −{x}+\mathrm{2}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow{a},{b},{c}=\left(−\mathrm{1},\mathrm{1},\mathrm{2}\right) \\ $$
Commented by a.lgnaoui last updated on 13/Nov/22
thanks
$${thanks}\: \\ $$
Answered by mr W last updated on 14/Nov/22
2)  a=(√7),b=(√(13)),c=(√3)  Δ=((√(((√(13))+(√7)+(√3))(−(√(13))+(√7)+(√3))((√(13))−(√7)+(√3))((√(13))+(√7)−(√3))))/4)=((5(√3))/4)  x=±((4(√6)×((5(√3))/4)+3(√2)(−7+13+3))/(6(√(13+7+3+4(√3)×((5(√3))/4)))))  x=±((15(√2)+3(√2)(−7+13+3))/(6(√(13+7+3+15))))=±(7/( (√(19))))  y=±((15(√2)+3(√2)(7−13+3))/(6(√(13+7+3+15))))=±(1/( (√(19))))  z=±((15(√2)+3(√2)(7+13−3))/(6(√(13+7+3+15))))=±((11)/( (√(19))))
$$\left.\mathrm{2}\right) \\ $$$${a}=\sqrt{\mathrm{7}},{b}=\sqrt{\mathrm{13}},{c}=\sqrt{\mathrm{3}} \\ $$$$\Delta=\frac{\sqrt{\left(\sqrt{\mathrm{13}}+\sqrt{\mathrm{7}}+\sqrt{\mathrm{3}}\right)\left(−\sqrt{\mathrm{13}}+\sqrt{\mathrm{7}}+\sqrt{\mathrm{3}}\right)\left(\sqrt{\mathrm{13}}−\sqrt{\mathrm{7}}+\sqrt{\mathrm{3}}\right)\left(\sqrt{\mathrm{13}}+\sqrt{\mathrm{7}}−\sqrt{\mathrm{3}}\right)}}{\mathrm{4}}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{4}} \\ $$$${x}=\pm\frac{\mathrm{4}\sqrt{\mathrm{6}}×\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{4}}+\mathrm{3}\sqrt{\mathrm{2}}\left(−\mathrm{7}+\mathrm{13}+\mathrm{3}\right)}{\mathrm{6}\sqrt{\mathrm{13}+\mathrm{7}+\mathrm{3}+\mathrm{4}\sqrt{\mathrm{3}}×\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{4}}}} \\ $$$${x}=\pm\frac{\mathrm{15}\sqrt{\mathrm{2}}+\mathrm{3}\sqrt{\mathrm{2}}\left(−\mathrm{7}+\mathrm{13}+\mathrm{3}\right)}{\mathrm{6}\sqrt{\mathrm{13}+\mathrm{7}+\mathrm{3}+\mathrm{15}}}=\pm\frac{\mathrm{7}}{\:\sqrt{\mathrm{19}}} \\ $$$${y}=\pm\frac{\mathrm{15}\sqrt{\mathrm{2}}+\mathrm{3}\sqrt{\mathrm{2}}\left(\mathrm{7}−\mathrm{13}+\mathrm{3}\right)}{\mathrm{6}\sqrt{\mathrm{13}+\mathrm{7}+\mathrm{3}+\mathrm{15}}}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{19}}} \\ $$$${z}=\pm\frac{\mathrm{15}\sqrt{\mathrm{2}}+\mathrm{3}\sqrt{\mathrm{2}}\left(\mathrm{7}+\mathrm{13}−\mathrm{3}\right)}{\mathrm{6}\sqrt{\mathrm{13}+\mathrm{7}+\mathrm{3}+\mathrm{15}}}=\pm\frac{\mathrm{11}}{\:\sqrt{\mathrm{19}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *