Menu Close

Resoudre-l-equaation-acos-x-bsin-x-c-a-b-c-R-3-




Question Number 177306 by a.lgnaoui last updated on 03/Oct/22
Resoudre l equaation    acos x+bsin x=c  (a,b,c)∈R^3
Resoudrelequaationacosx+bsinx=c(a,b,c)R3
Answered by Ar Brandon last updated on 03/Oct/22
acosx+bsinx=c  ...eqn(i)  Let Rsin(x+ϑ)=c  ⇒Rsinxcosϑ+Rcosxsinϑ=c   ...eqn(ii)  Comparing (i) and (ii)   { ((Rsinϑ=a)),((Rcosϑ=b)) :} ⇒tanϑ=(a/b) ⇒ϑ=tan^(−1) ((a/b))  a^2 +b^2 =R^2  ⇒R=(√(a^2 +b^2 ))  ⇒(√(a^2 +b^2 ))sin(x+tan^(−1) ((a/b)))=c  ⇒x=sin^(−1) ((c/( (√(a^2 +b^2 )))))−tan^(−1) ((a/b))
acosx+bsinx=ceqn(i)LetRsin(x+ϑ)=cRsinxcosϑ+Rcosxsinϑ=ceqn(ii)Comparing(i)and(ii){Rsinϑ=aRcosϑ=btanϑ=abϑ=tan1(ab)a2+b2=R2R=a2+b2a2+b2sin(x+tan1(ab))=cx=sin1(ca2+b2)tan1(ab)
Commented by a.lgnaoui last updated on 03/Oct/22
sin (x+tan^(−1) ((a/b)))=(c/( (√(a^2 +b^2 ))))  x+tan^(−1) ((a/b))=sin^(−1) ((c/( (√(a^2 +b^2 )))))  x+α=β⇒x=β−α  x=[sin^(−1) ((c/( (√(a^2 +b^2 )))))−tan^(−1) ((a/b))]
sin(x+tan1(ab))=ca2+b2x+tan1(ab)=sin1(ca2+b2)x+α=βx=βαx=[sin1(ca2+b2)tan1(ab)]
Commented by a.lgnaoui last updated on 03/Oct/22
x=sin^(−1)  ((c/( (√(a^2 +b^2 )))))−tan^(−1)  ((a/b))+k2π   (k∈Z)
x=sin1(ca2+b2)tan1(ab)+k2π(kZ)
Commented by a.lgnaoui last updated on 03/Oct/22
avec    −1≤(c/( (√(a^2 +b^2 ))))≤1  ( c^2 ≤a^2 +b^2 )
avec1ca2+b21(c2a2+b2)
Answered by a.lgnaoui last updated on 03/Oct/22
on peut poser t=tan (( x)/2)  sin x=((2t)/(2+t^2 ))    cos x=((1−t^2 )/(1+t^2 ))  a(1−t^2 )+2bt=c(1+t^2 )  t^2 −((2b)/(a+c))t+((c−a)/(c+a))=0  Δ′=(b^2 /((a+c)^2 ))−((c−a)/(a+c))=((a^2 +b^2 −c^2 )/((a+c)^2 ))   (c^2 ≤a^2 +b^2 )  t=((b±(√(a^2 +b^2 −c^2 )))/(a+c))   (x_1 /2)=Arctan(((b+(√(a^2 +b^2 −c^2 )))/(a+c)) )+(2k+1)π   x_1 =2Arctan( ((b+(√(a^2 +b^2 −c^2  )) )/(a+c)))+(2k+1)π   (a+c≠0 et k∈Z)  x_2 =2Arctan( ((b−(√(a^2 +b^2 −c^2 )))/(a+c)))+(2k+1)π
onpeutposert=tanx2sinx=2t2+t2cosx=1t21+t2a(1t2)+2bt=c(1+t2)t22ba+ct+cac+a=0Δ=b2(a+c)2caa+c=a2+b2c2(a+c)2(c2a2+b2)t=b±a2+b2c2a+cx12=Arctan(b+a2+b2c2a+c)+(2k+1)πx1=2Arctan(b+a2+b2c2a+c)+(2k+1)π(a+c0etkZ)x2=2Arctan(ba2+b2c2a+c)+(2k+1)π

Leave a Reply

Your email address will not be published. Required fields are marked *