Menu Close

Rigorously-over-one-month-s-time-I-developed-a-formula-for-general-cubic-x-3-ax-2-bx-c-0-let-x-pt-q-t-1-pq-m-p-q-s-m-2-a-2-b-2-6a-ab-c-m-2-b-2-ac-a-2-b-




Question Number 79015 by ajfour last updated on 22/Jan/20
Rigorously over one month′s  time, I developed a formula for  general cubic.  x^3 +ax^2 +bx+c=0  let  x=((pt+q)/(t+1))  pq=m, p+q=s  ________________________  m^2 {(a^2 +b)^2 −6a(ab−c)}  +m{2(b^2 +ac)(a^2 +b)−              3(ab−c)(ab+3c)}     +(b^2 +ac)^2 −6bc(ab−c)=0  ________________________  s=−(2/3){((m(a^2 +b)+b^2 +ac)/(ab−c))}    +{(8/(27))[((m(a^2 +b)+b^2 +ac)/(ab−c))]^3      −8[((m^3 +bm^2 +acm+c^2 )/(ab−c))]}^(1/3)   p,q = (s/2)±(√((s^2 /4)−m))  t=−(((3pq^2 +2apq+ap^2 +2bp+bq+3c))/((p^3 +ap^2 +bp+c)))  x=((pt+q)/(t+1)) .  (Please help checking..)  (edited a digit 1 in place of 4)
Rigorouslyoveronemonthstime,Idevelopedaformulaforgeneralcubic.x3+ax2+bx+c=0letx=pt+qt+1\boldsymbolpq=\boldsymbolm,\boldsymbolp+\boldsymbolq=\boldsymbols________________________\boldsymbolm2{(\boldsymbola2+\boldsymbolb)26\boldsymbola(\boldsymbolab\boldsymbolc)}+\boldsymbolm{2(\boldsymbolb2+\boldsymbolac)(\boldsymbola2+\boldsymbolb)3(\boldsymbolab\boldsymbolc)(\boldsymbolab+3\boldsymbolc)}+(\boldsymbolb2+\boldsymbolac)26\boldsymbolbc(\boldsymbolab\boldsymbolc)=0________________________\boldsymbols=23{\boldsymbolm(\boldsymbola2+\boldsymbolb)+\boldsymbolb2+\boldsymbolac\boldsymbolab\boldsymbolc}+{827[\boldsymbolm(\boldsymbola2+\boldsymbolb)+\boldsymbolb2+\boldsymbolac\boldsymbolab\boldsymbolc]38[\boldsymbolm3+\boldsymbolbm2+\boldsymbolacm+\boldsymbolc2\boldsymbolab\boldsymbolc]}1/3\boldsymbolp,\boldsymbolq=\boldsymbols2±\boldsymbols24\boldsymbolm\boldsymbolt=(3\boldsymbolpq2+2\boldsymbolapq+\boldsymbolap2+2\boldsymbolbp+\boldsymbolbq+3\boldsymbolc)(\boldsymbolp3+\boldsymbolap2+\boldsymbolbp+\boldsymbolc)\boldsymbolx=\boldsymbolpt+\boldsymbolq\boldsymbolt+1.(Pleasehelpchecking..)(editedadigit1inplaceof4)
Commented by mr W last updated on 22/Jan/20
great sir! you did it!  just one question before further  studying:  we get generally two values for m and  s, for each pair of m and s we get  a pair of p and q and one value of t,  and finally a root x. totally we get  two roots. but generally we have three  roots. what did i understand wrongly?
greatsir!youdidit!justonequestionbeforefurtherstudying:wegetgenerallytwovaluesformands,foreachpairofmandswegetapairofpandqandonevalueoft,andfinallyarootx.totallywegettworoots.butgenerallywehavethreeroots.whatdidiunderstandwrongly?
Commented by MJS last updated on 22/Jan/20
doesn′t work for  x^3 +3x^2 −13x−15=0  with x_1 =−5, x_2 =−1, x_3 =3  your method gives depending on the choice  of p and q [t is not symmetric in p, q; so we  have to decide p=(s/2)+... or p=(s/2)−...]  x≈.172±.763 or x≈−1.43±2.53  btw. in this case m∉R
doesntworkforx3+3x213x15=0withx1=5,x2=1,x3=3yourmethodgivesdependingonthechoiceofpandq[tisnotsymmetricinp,q;sowehavetodecidep=s2+orp=s2]x.172±.763orx1.43±2.53btw.inthiscasemR
Commented by ajfour last updated on 22/Jan/20
its not at all good! but just now  i had been modifying the  Cardano formula, first let me  confirm and i shall post then..
itsnotatallgood!butjustnowihadbeenmodifyingtheCardanoformula,firstletmeconfirmandishallpostthen..
Commented by TawaTawa last updated on 23/Jan/20
Weldone sir
WeldonesirWeldonesir

Leave a Reply

Your email address will not be published. Required fields are marked *