Russian-olympiad-find-real-solution-of-the-system-sin-x-2sin-x-y-z-0-sin-y-3sin-x-y-z-0-sin-z-4sin-x-y-z-0- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 119494 by liberty last updated on 25/Oct/20 Russianolympiadfindrealsolutionofthesystem{sinx+2sin(x+y+z)=0siny+3sin(x+y+z)=0sinz+4sin(x+y+z)=0 Answered by benjo_mathlover last updated on 25/Oct/20 →sin(x+y+z)=−sinx2=−siny3=−sinz4letsinx=kthen{siny=32ksinz=2k→sin((x+y)+z)=sin(x+y)cosz+cos(x+y)sinz=cosz(sinxcosy+cosxsiny)+sinz(cosxcosy−sinxsiny)=sinxcosycosz+sinycosxcosz+sinzcosxcosy−sinxsinysinztobecontinue.. Answered by 1549442205PVT last updated on 25/Oct/20 {sinx+2sin(x+y+z)=0(1)siny+3sin(x+y+z)=0(2)sinz+4sin(x+y+z)=0(3)(∗)⇒sinx−2=siny−3=sinz−4=−m⇔∣4m∣=∣sinz∣⩽1⇒−14⩽m⩽14(∗∗)⇒sinx=2m,siny=3m,sinz=4mcosx=±1−4m2,cosy=±1−9m2cosz=±1−16m2(4)∙Considercasecosx,cosy,cosz>0sin(x+y+z)=sinxcos(y+z)+cosxsin(y+z)=sinx(cosycosz−sinysinz)+cosx(sinycosz+cosysinz)=2m1−25m2+144m4−24m3+3m1−20m2+64m4+4m1−13m2+36m4Replaceinto(3)weget:4m+8m1−25m2+144m4−48m3+12m1−20m2+64m4+16m1−13m2+36m4=0i)m=0⇒sinx=siny=sinz=0⇒x=mπ,y=nπ,z=kπii)4+81−25m2+144m4−96m2+121−20m2+64m4+161−13m2+36m4=0=4−96m2+8(1−25m2−144m4)+12(1−20m2+64+16(1312−6m2)−25144⩾4−96.116+16(1312−616)2−25144=−2+162164=−2+221>0Sincem2⩽116,henceL.H.S>0∀msatisfying(∗∗),sotheequationhasnorootsThus,thesystemofequations(∗)hasafamilyofsolutionsare:(x,y,z)=(lπ,nπ,kπ)(withl,n,k∈Z)∙Thecosx>0,cosy,cosz<0.Wehave(3)−ii)⇔4+81−25m2+144m4−96m2−121−20m2+64m4−161−13m2+36m4⇔81−25m2+144m4=96m2−4+121−20m2+64m4+161−13m2+36m4(♠)Wehave81−25m2+144m4⩽121−20m2+64m4⇔21−25m2+144m4⩽31−20m2+64m4⇔4(1−25m2+144m4)⩽9(1−20m2+64m4)⇔80m2⩽5⇔m2⩽16(1)Thisinequalityistruedueto(∗∗).Ontheotherhands,byaboveproofwehave:161−13m2+36m2>221>4⇒96m2−4+161−13m2+36m2>0(2)From(1)(2)weinferthattheequation(♠)hasnoroot.Hencethiscaseprovedequationhasnoroots∙Thecosx,cosy<0,cosz>0.Wehave(3)−ii)⇔4−81−25m2+144m4−96m2−121−20m2+64m4+161−13m2+36m4⇔21−25m2+144m4+31−20m2+64m4=41−13m2+36m4−24m2+1⇔4(1−25m2+144m4)+9(1−20m2+64m4)+129216m8−4480m6+708m4−45m2+1=16(1−13m2+36m4)+576m4−48m2+1+8(1−24m2)1−13m2+36m4⇔129216m8−4480m6+708m4−45m2+1=24m2+4+8(1−25m2)1−13m2+36m4⇒144(9216m8−4480m6+708m4−45m2+1)=576m4+16+192m2+64(1−50m2+625m4)(1−13m2+36m4)+16(4+24m2)(1−25m2)1−13m2+3m4⇔−112896m8−9920m6+59115m4−2640m2+64=16(4+24m2)(1−25m2)1−13m2+36m4becontinued Answered by TANMAY PANACEA last updated on 25/Oct/20 sin(x+y+z)=cosxcosycosz(tanx+tany+tanz−tanxtanytanz)sin(x+y+z)=sinx−2=siny−3=sinz−4=asoa=(1−4a2)12(1−9a2)12(1−16a2)12(−2a1−4a2+−3a1−9a2+−4a1−16a2+24a3(1−4a2)(1−9a2)(1−16a2))tosolve… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-119495Next Next post: let-x-arctan-2x-1-x-2-1-calculate-n-x-2-calculate-n-0-anddevelpp-at-integr-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.