Menu Close

Russian-olympiad-find-real-solution-of-the-system-sin-x-2sin-x-y-z-0-sin-y-3sin-x-y-z-0-sin-z-4sin-x-y-z-0-




Question Number 119494 by liberty last updated on 25/Oct/20
Russian olympiad   find real solution of the system    { ((sin x+2sin (x+y+z)=0)),((sin y+3sin (x+y+z)=0)),((sin z+4sin (x+y+z)=0)) :}
Russianolympiadfindrealsolutionofthesystem{sinx+2sin(x+y+z)=0siny+3sin(x+y+z)=0sinz+4sin(x+y+z)=0
Answered by benjo_mathlover last updated on 25/Oct/20
→ sin (x+y+z) = −((sin x)/2)=−((sin y)/3)=−((sin z)/4)  let sin x = k then  { ((sin y=(3/2)k)),((sin z=2k)) :}  →sin ((x+y)+z)=sin (x+y)cos z+cos (x+y)sin z  = cos z(sin xcos y+cos xsin y)+sin z(cos xcos y−sin xsin y)  =sin xcos ycos z+sin ycos xcos z+sin zcos xcos y−sin xsin ysin z  tobe continue..
sin(x+y+z)=sinx2=siny3=sinz4letsinx=kthen{siny=32ksinz=2ksin((x+y)+z)=sin(x+y)cosz+cos(x+y)sinz=cosz(sinxcosy+cosxsiny)+sinz(cosxcosysinxsiny)=sinxcosycosz+sinycosxcosz+sinzcosxcosysinxsinysinztobecontinue..
Answered by 1549442205PVT last updated on 25/Oct/20
 { ((sin x+2sin (x+y+z)=0(1))),((sin y+3sin (x+y+z)=0(2))),((sin z+4sin (x+y+z)=0(3))) :}(∗)   ⇒((sinx)/(−2))=((siny)/(−3))=((sinz)/(−4))=−m  ⇔∣4m∣=∣sinz∣≤1⇒((−1)/4)≤m≤(1/4)(∗∗)  ⇒sinx=2m,siny=3m,sinz=4m  cosx=±(√(1−4m^2 )),cosy=±(√(1−9m^2 ))  cosz=±(√(1−16m^2  )) (4)  •Consider case cosx,cosy,cosz>0  sin(x+y+z)=sinxcos(y+z)+cosxsin(y+z)  =sinx(cosycosz−sinysinz)  +cosx(sinycosz+cosysinz)  =2m(√(1−25m^2 +144m^4 ))−24m^3   +3m(√(1−20m^2 +64m^4 )) +4m(√(1−13m^2 +36m^4 ))  Replace into (3)we get:  4m+8m(√(1−25m^2 +144m^4 ))−48m^3   +12m(√(1−20m^2 +64m^4 )) +16m(√(1−13m^2 +36m^4 ))=0  i)m=0⇒sinx=siny=sinz=0  ⇒x=mπ,y=nπ,z=kπ  ii)4+8(√(1−25m^2 +144m^4 ))−96m^2   +12(√(1−20m^2 +64m^4 )) +16(√(1−13m^2 +36m^4 ))=0  =4−96m^2 +8(√((1−25m^2 −144m^4 )))  +12(√((1−20m^2 +64)) +16(√((((13)/(12))−6m^2 )−((25)/(144))))  ≥4−96.(1/(16))+16(√((((13)/(12))−(6/(16)))^2 −((25)/(144))))  =−2+16(√((21)/(64)))=−2+2(√(21))>0  Since m^2 ≤(1/(16)),  hence L.H.S>0 ∀m satisfying (∗∗),so  the equation has no roots  Thus,the system of equations (∗)has  a family of solutions are:  (x,y,z)=(l𝛑,n𝛑,k𝛑) (with l,n,k∈Z)  •The cosx>0,cosy,cosz<0.We have  (3)−ii)⇔4+8(√(1−25m^2 +144m^4 )) −96m^2   −12(√(1−20m^2 +64m^4 )) −16(√(1−13m^2 +36m^4 ))  ⇔8(√(1−25m^2 +144m^4 )) =96m^2 −4+  12(√(1−20m^2 +64m^4 )) +16(√(1−13m^2 +36m^4 ))(♠)  We have 8(√(1−25m^2 +144m^4 )) ≤  12(√(1−20m^2 +64m^4 )) ⇔2(√(1−25m^2 +144m^4 ))   ≤3(√(1−20m^2 +64m^4 ))⇔  4(1−25m^2 +144m^4 )≤9(1−20m^2 +64m^4 )  ⇔80m^2 ≤5⇔m^2 ≤16 (1)This inequality   is true due to (∗∗).On the other hands,  by above proof we have:  16(√(1−13m^2 +36m^2 ))>2(√(21))>4⇒  96m^2 −4+16(√(1−13m^2 +36m^2 ))>0(2)  From (1)(2) we infer that the equation  (♠) has no root.Hence this case proved         equation has no roots  •The cosx,cosy<0,cosz>0.We have  (3)−ii)⇔4−8(√(1−25m^2 +144m^4 ))−96m^2   −12(√(1−20m^2 +64m^4 )) +16(√(1−13m^2 +36m^4 ))  ⇔2(√(1−25m^2 +144m^4 )) +3(√(1−20m^2 +64m^4 ))  =4(√(1−13m^2 +36m^4 ))−24m^2 +1⇔  4(1−25m^2 +144m^4 )+9(1−20m^2 +64m^4 )  +12(√(9216m^8 −4480m^6 +708m^4 −45m^2 +1))  =16(1−13m^2 +36m^4 )+576m^4 −48m^2 +1  +8(1−24m^2 )(√(1−13m^2 +36m^4 ))  ⇔12(√(9216m^8 −4480m^6 +708m^4 −45m^2 +1))  =24m^2 +4+8(1−25m^2 )(√(1−13m^2 +36m^4 ))  ⇒144(9216m^8 −4480m^6 +708m^4 −45m^2 +1)  =576m^4 +16+192m^2 +64(1−50m^2 +625m^4 )(1−13m^2 +36m^4 )  +16(4+24m^2 )(1−25m^2 )(√(1−13m^2 +3m^4 ))  ⇔−112896m^8 −9920m^6 +59115m^4   −2640m^2 +64=16(4+24m^2 )(1−25m^2 )(√(1−13m^2 +36m^4 ))  be continued
{sinx+2sin(x+y+z)=0(1)siny+3sin(x+y+z)=0(2)sinz+4sin(x+y+z)=0(3)()sinx2=siny3=sinz4=m⇔∣4m∣=∣sinz∣⩽114m14()sinx=2m,siny=3m,sinz=4mcosx=±14m2,cosy=±19m2cosz=±116m2(4)Considercasecosx,cosy,cosz>0sin(x+y+z)=sinxcos(y+z)+cosxsin(y+z)=sinx(cosycoszsinysinz)+cosx(sinycosz+cosysinz)=2m125m2+144m424m3+3m120m2+64m4+4m113m2+36m4Replaceinto(3)weget:4m+8m125m2+144m448m3+12m120m2+64m4+16m113m2+36m4=0i)m=0sinx=siny=sinz=0x=mπ,y=nπ,z=kπii)4+8125m2+144m496m2+12120m2+64m4+16113m2+36m4=0=496m2+8(125m2144m4)+12(120m2+64+16(13126m2)25144496.116+16(1312616)225144=2+162164=2+221>0Sincem2116,henceL.H.S>0msatisfying(),sotheequationhasnorootsThus,thesystemofequations()hasafamilyofsolutionsare:(x,y,z)=(lπ,nπ,kπ)(withl,n,kZ)Thecosx>0,cosy,cosz<0.Wehave(3)ii)4+8125m2+144m496m212120m2+64m416113m2+36m48125m2+144m4=96m24+12120m2+64m4+16113m2+36m4()Wehave8125m2+144m412120m2+64m42125m2+144m43120m2+64m44(125m2+144m4)9(120m2+64m4)80m25m216(1)Thisinequalityistruedueto().Ontheotherhands,byaboveproofwehave:16113m2+36m2>221>496m24+16113m2+36m2>0(2)From(1)(2)weinferthattheequation()hasnoroot.HencethiscaseprovedequationhasnorootsThecosx,cosy<0,cosz>0.Wehave(3)ii)48125m2+144m496m212120m2+64m4+16113m2+36m42125m2+144m4+3120m2+64m4=4113m2+36m424m2+14(125m2+144m4)+9(120m2+64m4)+129216m84480m6+708m445m2+1=16(113m2+36m4)+576m448m2+1+8(124m2)113m2+36m4129216m84480m6+708m445m2+1=24m2+4+8(125m2)113m2+36m4144(9216m84480m6+708m445m2+1)=576m4+16+192m2+64(150m2+625m4)(113m2+36m4)+16(4+24m2)(125m2)113m2+3m4112896m89920m6+59115m42640m2+64=16(4+24m2)(125m2)113m2+36m4becontinued
Answered by TANMAY PANACEA last updated on 25/Oct/20
sin(x+y+z)=cosxcosycosz(tanx+tany+tanz−tanxtanytanz)  sin(x+y+z)=((sinx)/(−2))=((siny)/(−3))=((sinz)/(−4))=a  so  a=(1−4a^2 )^(1/2) (1−9a^2 )^(1/2) (1−16a^2 )^(1/2) (((−2a)/( (√(1−4a^2 ))))+((−3a)/( (√(1−9a^2 ))))+((−4a)/( (√(1−16a^2 )) ))+((24a^3 )/( (√((1−4a^2 )(1−9a^2 )(1−16a^2 ))))))  to solve...
sin(x+y+z)=cosxcosycosz(tanx+tany+tanztanxtanytanz)sin(x+y+z)=sinx2=siny3=sinz4=asoa=(14a2)12(19a2)12(116a2)12(2a14a2+3a19a2+4a116a2+24a3(14a2)(19a2)(116a2))tosolve

Leave a Reply

Your email address will not be published. Required fields are marked *