Menu Close

S-1-2-3-4-S-n-1-1-n-1-n-S-lim-s-0-n-1-1-n-1-n-1-s-Prove-S-1-4-




Question Number 14486 by FilupS last updated on 01/Jun/17
S=1−2+3−4+...  ∴S=Σ_(n=1) ^∞ (−1)^(n+1) n     S=lim_(s→0) (Σ_(n=1) ^∞ (−1)^(n+1) n^(1−s) )     Prove S=(1/4)
$${S}=\mathrm{1}−\mathrm{2}+\mathrm{3}−\mathrm{4}+… \\ $$$$\therefore{S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n} \\ $$$$\: \\ $$$${S}=\underset{{s}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} {n}^{\mathrm{1}−{s}} \right) \\ $$$$\: \\ $$$$\mathrm{Prove}\:{S}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *