Menu Close

S-15-S-25-150-S-30-




Question Number 144515 by Khalmohmmad last updated on 26/Jun/21
S_(15) −S_(25) =150  S_(30) =?
$${S}_{\mathrm{15}} −{S}_{\mathrm{25}} =\mathrm{150} \\ $$$${S}_{\mathrm{30}} =? \\ $$
Commented by MJS_new last updated on 27/Jun/21
there are at least 3 Ss: S_(15) , S_(25)  and S_(30) . obviously  S_(25)  is a Something which we can subtract  from S_(15) . after the substraction all that  remains is the number 150. and S_(30)  is a  lonesome question mark...  may I ask a similar question?  f(x)−l(x)=35  p(x)=?  should be as easy as the above one...
$$\mathrm{there}\:\mathrm{are}\:\mathrm{at}\:\mathrm{least}\:\mathrm{3}\:{S}\mathrm{s}:\:{S}_{\mathrm{15}} ,\:{S}_{\mathrm{25}} \:\mathrm{and}\:{S}_{\mathrm{30}} .\:\mathrm{obviously} \\ $$$${S}_{\mathrm{25}} \:\mathrm{is}\:\mathrm{a}\:{S}\mathrm{omething}\:\mathrm{which}\:\mathrm{we}\:\mathrm{can}\:\mathrm{subtract} \\ $$$$\mathrm{from}\:{S}_{\mathrm{15}} .\:\mathrm{after}\:\mathrm{the}\:\mathrm{substraction}\:\mathrm{all}\:\mathrm{that} \\ $$$$\mathrm{remains}\:\mathrm{is}\:\mathrm{the}\:\mathrm{number}\:\mathrm{150}.\:\mathrm{and}\:{S}_{\mathrm{30}} \:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{lonesome}\:\mathrm{question}\:\mathrm{mark}… \\ $$$$\mathrm{may}\:\mathrm{I}\:\mathrm{ask}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{question}? \\ $$$${f}\left({x}\right)−{l}\left({x}\right)=\mathrm{35} \\ $$$${p}\left({x}\right)=? \\ $$$$\mathrm{should}\:\mathrm{be}\:\mathrm{as}\:\mathrm{easy}\:\mathrm{as}\:\mathrm{the}\:\mathrm{above}\:\mathrm{one}… \\ $$
Answered by ajfour last updated on 26/Jun/21
S_(15) −S_(25) =S_(15−25) =S_(−10)   ⇒  (1/S^( 10) )=150  hence  (1/S^( 30) )=(150)^3   (1/S_(30) )=(3)^(150)   obviously  S_(30) =((1/3))^(150)
$${S}_{\mathrm{15}} −{S}_{\mathrm{25}} ={S}_{\mathrm{15}−\mathrm{25}} ={S}_{−\mathrm{10}} \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{{S}^{\:\mathrm{10}} }=\mathrm{150} \\ $$$${hence}\:\:\frac{\mathrm{1}}{{S}^{\:\mathrm{30}} }=\left(\mathrm{150}\right)^{\mathrm{3}} \\ $$$$\frac{\mathrm{1}}{{S}_{\mathrm{30}} }=\left(\mathrm{3}\right)^{\mathrm{150}} \\ $$$${obviously}\:\:{S}_{\mathrm{30}} =\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{150}} \\ $$
Commented by Dwaipayan Shikari last updated on 26/Jun/21
FUN
$${FUN} \\ $$
Commented by MJS_new last updated on 27/Jun/21
yes!!!  similar to  log_(15)  x −log_(25)  y =150  log_(30)  (x/y) =?  log_(15)  x −log_(25)  y =log_(15−25)  (x−y) =log_(−10)  (x/y)  ⇒ (1/(log_(10)  (y/x)))=150  ⇒ (1/(log_(30)  (y/x)))=3^(150)   ⇒ log_(30)  (x/y) =(1/(150^3 ))  let′s invent The New World Mathematics!
$$\mathrm{yes}!!! \\ $$$$\mathrm{similar}\:\mathrm{to} \\ $$$$\mathrm{log}_{\mathrm{15}} \:{x}\:−\mathrm{log}_{\mathrm{25}} \:{y}\:=\mathrm{150} \\ $$$$\mathrm{log}_{\mathrm{30}} \:\frac{{x}}{{y}}\:=? \\ $$$$\mathrm{log}_{\mathrm{15}} \:{x}\:−\mathrm{log}_{\mathrm{25}} \:{y}\:=\mathrm{log}_{\mathrm{15}−\mathrm{25}} \:\left({x}−{y}\right)\:=\mathrm{log}_{−\mathrm{10}} \:\frac{{x}}{{y}} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{10}} \:\frac{{y}}{{x}}}=\mathrm{150} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{log}_{\mathrm{30}} \:\frac{{y}}{{x}}}=\mathrm{3}^{\mathrm{150}} \\ $$$$\Rightarrow\:\mathrm{log}_{\mathrm{30}} \:\frac{{x}}{{y}}\:=\frac{\mathrm{1}}{\mathrm{150}^{\mathrm{3}} } \\ $$$$\mathrm{let}'\mathrm{s}\:\mathrm{invent}\:\mathrm{The}\:\mathrm{New}\:\mathrm{World}\:\mathrm{Mathematics}! \\ $$
Commented by imjagoll last updated on 27/Jun/21
hahahaha.....
$$\mathrm{hahahaha}….. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *