Menu Close

S-4-3-m-m-m-a-m-m-b-m-m-c-m-m-a-m-b-m-c-2-m-a-m-b-m-c-mediani-prove-




Question Number 148821 by vvvv last updated on 31/Jul/21
S=(4/3)(√(m(m−m_a )(m−m_b )(m−m_c )))  m=((m_a +m_b +m_c )/2)  m_a ;m_b ;m_c −mediani  prove
$$\boldsymbol{{S}}=\frac{\mathrm{4}}{\mathrm{3}}\sqrt{\boldsymbol{{m}}\left(\boldsymbol{{m}}−\boldsymbol{{m}}_{\boldsymbol{{a}}} \right)\left(\boldsymbol{{m}}−\boldsymbol{{m}}_{\boldsymbol{{b}}} \right)\left(\boldsymbol{{m}}−\boldsymbol{{m}}_{\boldsymbol{{c}}} \right)} \\ $$$$\boldsymbol{{m}}=\frac{\boldsymbol{{m}}_{\boldsymbol{{a}}} +\boldsymbol{{m}}_{\boldsymbol{{b}}} +\boldsymbol{{m}}_{\boldsymbol{{c}}} }{\mathrm{2}} \\ $$$$\boldsymbol{{m}}_{\boldsymbol{{a}}} ;\boldsymbol{{m}}_{\boldsymbol{{b}}} ;\boldsymbol{{m}}_{\boldsymbol{{c}}} −\boldsymbol{{mediani}} \\ $$$$\boldsymbol{{prove}} \\ $$
Answered by mr W last updated on 31/Jul/21
Commented by mr W last updated on 01/Aug/21
i don′t know.
$${i}\:{don}'{t}\:{know}. \\ $$
Commented by mr W last updated on 31/Jul/21
proof in short:  AG=(2/3)AD, BE=3×GE  AD=m_a , DK=BE=m_b , AK=CF=m_c   Δ_(ADK) =(√(m(m−m_a )(m−m_b )(m−m_c )))  Δ_(AGC) =Δ_(AGH) =((2/3))^2 Δ_(ADK)   S=Δ_(ABC) =3Δ_(AGC)   =(4/3)(√(m(m−m_a )(m−m_b )(m−m_c )))
$${proof}\:{in}\:{short}: \\ $$$${AG}=\frac{\mathrm{2}}{\mathrm{3}}{AD},\:{BE}=\mathrm{3}×{GE} \\ $$$${AD}={m}_{{a}} ,\:{DK}={BE}={m}_{{b}} ,\:{AK}={CF}={m}_{{c}} \\ $$$$\Delta_{{ADK}} =\sqrt{{m}\left({m}−{m}_{{a}} \right)\left({m}−{m}_{{b}} \right)\left({m}−{m}_{{c}} \right)} \\ $$$$\Delta_{{AGC}} =\Delta_{{AGH}} =\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} \Delta_{{ADK}} \\ $$$${S}=\Delta_{{ABC}} =\mathrm{3}\Delta_{{AGC}} \\ $$$$=\frac{\mathrm{4}}{\mathrm{3}}\sqrt{{m}\left({m}−{m}_{{a}} \right)\left({m}−{m}_{{b}} \right)\left({m}−{m}_{{c}} \right)} \\ $$
Commented by vvvv last updated on 31/Jul/21
CK≠m_c     CF=m_c
$$\boldsymbol{{CK}}\neq\boldsymbol{{m}}_{\boldsymbol{{c}}} \:\:\:\:\boldsymbol{{CF}}=\boldsymbol{{m}}_{\boldsymbol{{c}}} \\ $$
Commented by vvvv last updated on 31/Jul/21
draw software name please
$${draw}\:{software}\:{name}\:{please} \\ $$
Commented by mr W last updated on 31/Jul/21
LEKH DIAGRAM
$${LEKH}\:{DIAGRAM} \\ $$
Commented by EDWIN88 last updated on 01/Aug/21
compatible to pc?
$${compatible}\:{to}\:{pc}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *