Menu Close

s-a-2-a-2-d-2-b-a-2-b-2-a-2-2-b-2-c-b-2-2-c-d-p-a-a-2-d-a-b-b-2-a-2-b-c-b-2-Find-a-b-c-or-d-in-terms-of-s-if-p-is-maxim




Question Number 63090 by ajfour last updated on 28/Jun/19
s=(√(a^2 +(a^2 −d)^2 ))+(√((b−a)^2 +(b^2 −a^2 )^2 ))                 +(√(b^2 +(c−b^2 )^2 ))+c−d   p= a(a^2 −d)+(a+b)(b^2 −a^2 )                   +b(c−b^2 )  Find a,b,c, or d  in terms of s  if  p is maximum.   Assume    a,b,c,d ≥0 .
$${s}=\sqrt{{a}^{\mathrm{2}} +\left({a}^{\mathrm{2}} −{d}\right)^{\mathrm{2}} }+\sqrt{\left({b}−{a}\right)^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\sqrt{{b}^{\mathrm{2}} +\left({c}−{b}^{\mathrm{2}} \right)^{\mathrm{2}} }+{c}−{d} \\ $$$$\:{p}=\:{a}\left({a}^{\mathrm{2}} −{d}\right)+\left({a}+{b}\right)\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{b}\left({c}−{b}^{\mathrm{2}} \right) \\ $$$${Find}\:{a},{b},{c},\:{or}\:{d}\:\:{in}\:{terms}\:{of}\:{s} \\ $$$${if}\:\:{p}\:{is}\:{maximum}.\: \\ $$$${Assume}\:\:\:\:{a},{b},{c},{d}\:\geqslant\mathrm{0}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *