Menu Close

S-arctan-2-1-2-artan-2-2-2-




Question Number 192278 by manxsol last updated on 13/May/23
S=arctan((2/1^2 ))+artan((2/2^2 ))+........
$${S}={arctan}\left(\frac{\mathrm{2}}{\mathrm{1}^{\mathrm{2}} }\right)+{artan}\left(\frac{\mathrm{2}}{\mathrm{2}^{\mathrm{2}} }\right)+…….. \\ $$
Commented by Frix last updated on 14/May/23
As I posted before (but it was deleted):  I approximated it using software and got  S≈2.3561 which I think is ((3π)/4)
$$\mathrm{As}\:\mathrm{I}\:\mathrm{posted}\:\mathrm{before}\:\left(\mathrm{but}\:\mathrm{it}\:\mathrm{was}\:\mathrm{deleted}\right): \\ $$$$\mathrm{I}\:\mathrm{approximated}\:\mathrm{it}\:\mathrm{using}\:\mathrm{software}\:\mathrm{and}\:\mathrm{got} \\ $$$${S}\approx\mathrm{2}.\mathrm{3561}\:\mathrm{which}\:\mathrm{I}\:\mathrm{think}\:\mathrm{is}\:\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$
Commented by manxsol last updated on 14/May/23
Answered by witcher3 last updated on 14/May/23
S=Σ_(n≥1) tan^(−1) ((2/n^2 ))=Σ_(n≥1) tan^(−1) (((n+1−(n−1))/(1+(n−1)(1+n))))  =tan^(−1) (n+1)−tan^(−1) (n−1)  S=lim_(x→∞) Σ_(n=1) ^x {tan^(−1) (n+1)−tan^(−1) (n−1)}  =lim_(x→∞)  [tan^(−1) (x+1)+tan^(−1) (x)−tan^(−1) (1)}  =(π/2)+(π/2)−(π/4)=((3π)/4)
$$\mathrm{S}=\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} }\right)=\underset{\mathrm{n}\geqslant\mathrm{1}} {\sum}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{n}+\mathrm{1}−\left(\mathrm{n}−\mathrm{1}\right)}{\mathrm{1}+\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{1}+\mathrm{n}\right)}\right) \\ $$$$=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}+\mathrm{1}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}−\mathrm{1}\right) \\ $$$$\mathrm{S}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{n}=\mathrm{1}} {\overset{\mathrm{x}} {\sum}}\left\{\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}+\mathrm{1}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{n}−\mathrm{1}\right)\right\} \\ $$$$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left[\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}+\mathrm{1}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{x}\right)−\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{1}\right)\right\} \\ $$$$=\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}=\frac{\mathrm{3}\pi}{\mathrm{4}} \\ $$
Commented by manxsol last updated on 14/May/23
thank, Mr. Witcher
$${thank},\:{Mr}.\:{Witcher} \\ $$
Commented by Frix last updated on 14/May/23
��

Leave a Reply

Your email address will not be published. Required fields are marked *