Menu Close

S-C-n-0-C-n-2-1-C-n-1-C-n-2-2-C-n-n-C-n-2-n-1-




Question Number 125257 by Schwartzman94 last updated on 09/Dec/20
S=(C_n ^0 /C_(n+2) ^1 )+(C_n ^1 /C_(n+2) ^2 )+...+(C_n ^n /C_(n+2) ^(n+1) )
S=Cn0Cn+21+Cn1Cn+22++CnnCn+2n+1
Commented by mr W last updated on 09/Dec/20
S=((n+3)/6)
S=n+36
Answered by Olaf last updated on 09/Dec/20
  S = Σ_(k=0) ^(k=n) (C_n ^k /C_(n+2) ^(k+1) )  S = Σ_(k=0) ^(k=n) (((n!)/(k!(n−k)!))/(((n+2)!)/((k+1)!(n−k+1)!)))  S = Σ_(k=0) ^(k=n) (((n!)/(k!(n−k)!))/((n!(n+1)(n+2))/(k!(k+1)(n−k)!(n−k+1))))  S = Σ_(k=0) ^(k=n) (1/(((n+1)(n+2))/((k+1)(n−k+1))))  S = (1/((n+1)(n+2)))Σ_(k=0) ^(k=n) (k+1)(n−k+1)  S = (1/((n+1)(n+2)))Σ_(k=1) ^(k=n+1) k(n+2−k)  S = (1/((n+1)(n+2)))[(n+2)Σ_(k=1) ^(k=n+1) k−Σ_(k=1) ^(k=n+1) k^2 ]  S = (1/((n+1)(n+2)))[(n+2)(((n+1)(n+2))/2)−(((n+1)(n+2)(2n+3))/6)]  S = ((3(n+2)−(2n+3))/6)  S = ((n+3)/6)
S=k=nk=0CnkCn+2k+1S=k=nk=0n!k!(nk)!(n+2)!(k+1)!(nk+1)!S=k=nk=0n!k!(nk)!n!(n+1)(n+2)k!(k+1)(nk)!(nk+1)S=k=nk=01(n+1)(n+2)(k+1)(nk+1)S=1(n+1)(n+2)k=nk=0(k+1)(nk+1)S=1(n+1)(n+2)k=n+1k=1k(n+2k)S=1(n+1)(n+2)[(n+2)k=n+1k=1kk=n+1k=1k2]S=1(n+1)(n+2)[(n+2)(n+1)(n+2)2(n+1)(n+2)(2n+3)6]S=3(n+2)(2n+3)6S=n+36

Leave a Reply

Your email address will not be published. Required fields are marked *