Menu Close

S-n-0-1-x-2n-sin-2npix-dx-




Question Number 17514 by sma3l2996 last updated on 07/Jul/17
S(n)=∫_0 ^1 x^(2n) sin(2nπx)dx
$${S}\left({n}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}} {sin}\left(\mathrm{2}{n}\pi{x}\right){dx} \\ $$
Commented by alex041103 last updated on 07/Jul/17
Is n a whole number?
$$\mathrm{Is}\:{n}\:\mathrm{a}\:\mathrm{whole}\:\mathrm{number}? \\ $$
Commented by sma3l2996 last updated on 07/Jul/17
No n∈N
$${No}\:{n}\in{N} \\ $$
Answered by alex041103 last updated on 08/Jul/17
For n∈N  S(n) = Σ_(i=0) ^(n−1) ((1/(2πn)))^(2i+1) (((2n)!)/((2n−2i)!))  (−1)^(i+1)     For n∈R  S(n) = Σ_(i=0) ^∞   (((−1)^i )/(2(n+i+1)))(((2πn)^(2i+1) )/((2i+1)!))  Do you want the hole solution?
$$\mathrm{For}\:\mathrm{n}\in\mathbb{N} \\ $$$${S}\left({n}\right)\:=\:\underset{{i}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}\pi{n}}\right)^{\mathrm{2}{i}+\mathrm{1}} \frac{\left(\mathrm{2}{n}\right)!}{\left(\mathrm{2}{n}−\mathrm{2}{i}\right)!}\:\:\left(−\mathrm{1}\right)^{{i}+\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{For}\:\mathrm{n}\in\mathbb{R} \\ $$$${S}\left({n}\right)\:=\:\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\left(−\mathrm{1}\right)^{{i}} }{\mathrm{2}\left({n}+{i}+\mathrm{1}\right)}\frac{\left(\mathrm{2}\pi{n}\right)^{\mathrm{2}{i}+\mathrm{1}} }{\left(\mathrm{2}{i}+\mathrm{1}\right)!} \\ $$$$\mathrm{Do}\:\mathrm{you}\:\mathrm{want}\:\mathrm{the}\:\mathrm{hole}\:\mathrm{solution}? \\ $$
Commented by alex041103 last updated on 09/Jul/17
This is corrected and its the right answer
$$\mathrm{This}\:\mathrm{is}\:\mathrm{corrected}\:\mathrm{and}\:\mathrm{its}\:\mathrm{the}\:\mathrm{right}\:\mathrm{answer} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *