Menu Close

S-n-k-1-1-4k-2-1-n-find-a-simpler-form-




Question Number 92925 by frc2crc last updated on 09/May/20
S_n =Σ_(k=1) ^∞ (1/((4k^2 −1)^n ))  find a simpler form
Sn=k=11(4k21)nfindasimplerform
Commented by mr W last updated on 09/May/20
check your question please.  Σ_(k=1) ^(n or ∞)
checkyourquestionplease.nork=1
Commented by frc2crc last updated on 09/May/20
Σ_(k=1) ^∞ (1/((4k^2 −1)^n )) this sum for any n>0
k=11(4k21)nthissumforanyn>0
Commented by prakash jain last updated on 09/May/20
series is convergent for n≥1. We  can use limit comparion test.  n=1  (1/(4k^2 −1))=(1/2)((1/(2k−1))−(1/(2k+1)))  ⇒Σ_(k=1) ^∞ (1/(4k^2 −1))=(1/2)  n=2 can be evaluated using  known series expansion for π^2 .  −−−−−  I will check if a generic closed  form formula is possible.  It may exists using zeta function.
seriesisconvergentforn1.Wecanuselimitcompariontest.n=114k21=12(12k112k+1)k=114k21=12n=2canbeevaluatedusingknownseriesexpansionforπ2.Iwillcheckifagenericclosedformformulaispossible.Itmayexistsusingzetafunction.
Commented by abdomathmax last updated on 10/May/20
let take a try  let decompose F(x) =(1/((4x^2 −1)^n ))  =(1/((2x−1)^n (2x+1)^n )) changement 2x−1 =t give  x=((t+1)/2) ⇒2x+1 =t+2 ⇒F(x)=g(t)=(1/(t^n (t+2)^n ))  g(t) =Σ_(i=1) ^n  (a_i /t^i ) +Σ_(i=1) ^n  (b_i /((t+2)^i ))   what is a_i ?  we find D_(n−1) (0) for h(t) =(t+2)^(−n)  by taylor  seri we get h(t) =Σ_(p=0) ^(n−1)  ((h^((p)) (0))/((p)!)) t^p  +(t^n /(n!))ξ(t)  h^, (t) =−n(t+2)^(−n−1)    h^((2)) (t) =−n(−n−1)(t+2)^(−n−2)  =(−1)^2 n(n+1)(t+2)^(−n−2)   h^((p)) (x) =(−1)^p n(n+1)...(n+p−1)(t+2)^(−n−p)   ⇒h^((p)) (0) =(−1)^p n(n+1)....(n+p−1)2^(−n−p)  ⇒  h(t) =Σ_(p=0) ^(n−1)  (((−1)^p n(n+1)...(n+p−1))/(p! 2^(n+p) )) t^p  +(t^n /(n!))ξ(t) ⇒  g(t) =Σ_(p=0) ^(n−1)  (((−1)^p n(n+1)...(n+p−1))/(p!2^(n+p)  t^(n−p) )) +(1/(n!))ξ(t)  =_(n−p =i)   Σ_(i=1) ^n  (((−1)^(n−i) n(n+1)...(2n−i−1))/((n−i)!2^(2n−i)  t^i )) +...  ⇒a_i =(((−1)^(n−i) n(n+1)....(2n−i−1))/((n−i)! ×2^(2n−i) ))  what is b_i ? we determine D_(n−1) (−2) for h(t)=t^(−n)   h(t) =Σ_(p=0) ^(n−1)  ((h^((p)) (−2))/(p!)) (t+2)^p +(((t+2)^n )/(n!))ξ(t)  h^((p)) (t)=(−1)^p n(n+1)...(n+p−1)t^(−n−p)   ⇒h^((p)) (−2) =(−1)^p n(n+1)...(n+p−1)(−2)^(−n−p)  ⇒  h(t) =Σ_(p=0) ^(n−1)  (((−1)^p n(n+1)...(n+p−1)(−2)^(−n−p) )/(p!))(t+2)^p  +...  ⇒g(t) =Σ_(p=0) ^(n−1)  (((−1)^p n(n+1)...(n+p−1))/(p!(−2)^(n+p)  (t+2)^(n−p) )) +(1/(n!))ξ(t)  =_(n−p=i)    Σ_(i=1) ^n (((−1)^(n−i) n(n+1)...(2n−i−1))/((n−i)!(−2)^(2n−i) (t+2)^i ))+...⇒  b_i =(((−1)^(n−i) n(n+1)...(2n−i−1))/((n−i)!(−2)^(2n−i) ))  ...be continued....
lettakeatryletdecomposeF(x)=1(4x21)n=1(2x1)n(2x+1)nchangement2x1=tgivex=t+122x+1=t+2F(x)=g(t)=1tn(t+2)ng(t)=i=1naiti+i=1nbi(t+2)iwhatisai?wefindDn1(0)forh(t)=(t+2)nbytaylorseriwegeth(t)=p=0n1h(p)(0)(p)!tp+tnn!ξ(t)h,(t)=n(t+2)n1h(2)(t)=n(n1)(t+2)n2=(1)2n(n+1)(t+2)n2h(p)(x)=(1)pn(n+1)(n+p1)(t+2)nph(p)(0)=(1)pn(n+1).(n+p1)2nph(t)=p=0n1(1)pn(n+1)(n+p1)p!2n+ptp+tnn!ξ(t)g(t)=p=0n1(1)pn(n+1)(n+p1)p!2n+ptnp+1n!ξ(t)=np=ii=1n(1)nin(n+1)(2ni1)(ni)!22niti+ai=(1)nin(n+1).(2ni1)(ni)!×22niwhatisbi?wedetermineDn1(2)forh(t)=tnh(t)=p=0n1h(p)(2)p!(t+2)p+(t+2)nn!ξ(t)h(p)(t)=(1)pn(n+1)(n+p1)tnph(p)(2)=(1)pn(n+1)(n+p1)(2)nph(t)=p=0n1(1)pn(n+1)(n+p1)(2)npp!(t+2)p+g(t)=p=0n1(1)pn(n+1)(n+p1)p!(2)n+p(t+2)np+1n!ξ(t)=np=ii=1n(1)nin(n+1)(2ni1)(ni)!(2)2ni(t+2)i+bi=(1)nin(n+1)(2ni1)(ni)!(2)2nibecontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *