Menu Close

s-n-n-1-oo-1-n-n-2-n-x-n-




Question Number 182835 by SANOGO last updated on 15/Dec/22
s(n)=Σ_(n=1) ^(+oo)  (((−1)^n  +n^2 )/(n!))x^n  =?
$${s}\left({n}\right)=\underset{{n}=\mathrm{1}} {\overset{+{oo}} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{n}} \:+{n}^{\mathrm{2}} }{{n}!}{x}^{{n}} \:=? \\ $$
Answered by mr W last updated on 15/Dec/22
e^x −1=Σ_(n=1) ^∞ (x^n /(n!))  ⇒e^(−x) −1=Σ_(n=1) ^∞ (((−1)^n x^n )/(n!))      ...(i)  e^x =Σ_(n=1) ^∞ ((nx^(n−1) )/(n!))  xe^x =Σ_(n=1) ^∞ ((nx^n )/(n!))  e^x +xe^x =Σ_(n=1) ^∞ ((n^2 x^(n−1) )/(n!))  ⇒xe^x +x^2 e^x =Σ_(n=1) ^∞ ((n^2 x^n )/(n!))     ...(ii)  (i)+(ii):  ⇒s(x)=Σ_(n=1) ^∞ (((−1)^n +n^2 )/(n!))x^n =x(1+x)e^x +e^(−x) −1
$${e}^{{x}} −\mathrm{1}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!} \\ $$$$\Rightarrow{e}^{−{x}} −\mathrm{1}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{{n}} }{{n}!}\:\:\:\:\:\:…\left({i}\right) \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{nx}^{{n}−\mathrm{1}} }{{n}!} \\ $$$${xe}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{nx}^{{n}} }{{n}!} \\ $$$${e}^{{x}} +{xe}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} {x}^{{n}−\mathrm{1}} }{{n}!} \\ $$$$\Rightarrow{xe}^{{x}} +{x}^{\mathrm{2}} {e}^{{x}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} {x}^{{n}} }{{n}!}\:\:\:\:\:…\left({ii}\right) \\ $$$$\left({i}\right)+\left({ii}\right): \\ $$$$\Rightarrow{s}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} +{n}^{\mathrm{2}} }{{n}!}{x}^{{n}} ={x}\left(\mathrm{1}+{x}\right){e}^{{x}} +{e}^{−{x}} −\mathrm{1} \\ $$
Commented by SANOGO last updated on 15/Dec/22
merci bien
$${merci}\:{bien} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *