Menu Close

S-N-S-2-0-2-1-2-13-7-0-7-1-7-15-11-0-11-1-11-100-determinate-the-sum-of-positive-divisors-of-S-




Question Number 124696 by mathocean1 last updated on 05/Dec/20
S ∈ N.  S=(2^0 ×2^1 ×...×2^(13) )(7^0 ×7^1 ×...×7^(15) )(11^0 ×11^1 ×...×11^(100) )  determinate the sum of  positive  divisors of S.
SN.S=(20×21××213)(70×71××715)(110×111××11100)determinatethesumofpositivedivisorsofS.
Commented by mr W last updated on 05/Dec/20
see Q124332  S=2^(0+1+2+...+13) ×7^(0+1+2+...+15) ×11^(0+1+2+...+100)   =2^(91) ×7^(120) ×11^(5050)   sum of all divisors of S is  (((2^(92) −1)(7^(121) −1)(11^(5051) −1))/((2−1)(7−1)(11−1)))  =(((2^(92) −1)(7^(121) −1)(11^(5051) −1))/(60))
seeQ124332S=20+1+2++13×70+1+2++15×110+1+2++100=291×7120×115050sumofalldivisorsofSis(2921)(71211)(1150511)(21)(71)(111)=(2921)(71211)(1150511)60

Leave a Reply

Your email address will not be published. Required fields are marked *