Menu Close

S-x-2-1-x-1-x-3-1-x-2-x-n-1-x-n-1-t-1-x-n-t-Can-you-evaluate-S-




Question Number 13097 by FilupS last updated on 14/May/17
S=Σ_(x_2 =1) ^x_1  Σ_(x_3 =1) ^x_2  ∙∙∙Σ_(x_n =1) ^x_(n−1)  Σ_(t=1) ^x_n  t  Can you evaluate S?
S=x1x2=1x2x3=1xn1xn=1xnt=1tCanyouevaluateS?
Answered by nume1114 last updated on 15/May/17
    Σ_(t=1) ^x_n  t  =(((x_n +1)x_n )/(2!))      Σ_(x_n =1) ^x_(n−1)  Σ_(t=1) ^x_n  t  =(1/2)Σ_(x_n =1) ^x_(n−1)  (x_n +1)x_n   =(1/2)Σ_(x_n =1) ^x_(n−1)  (1/3){(x_n +2)(x_n +1)x_n −(x_n +1)x_n (x_n −1)}  =(((x_(n−1) +2)(x_(n−1) +1)x_(n−1) )/(3!))  ....  S=Σ_(x_2 =1) ^x_1  Σ_(x_3 =1) ^x_2  ∙∙∙Σ_(x_n =1) ^x_(n−1)  Σ_(t=1) ^x_n  t     =(((x_1 +n)(x_1 +n−1)...(x_1 +1)x_1 )/((n+1)!))
xnt=1t=(xn+1)xn2!xn1xn=1xnt=1t=12xn1xn=1(xn+1)xn=12xn1xn=113{(xn+2)(xn+1)xn(xn+1)xn(xn1)}=(xn1+2)(xn1+1)xn13!.S=x1x2=1x2x3=1xn1xn=1xnt=1t=(x1+n)(x1+n1)(x1+1)x1(n+1)!
Commented by mrW1 last updated on 16/May/17
Nice!
Nice!

Leave a Reply

Your email address will not be published. Required fields are marked *